मराठी

In How Many Ways Can 4 Prizes Be Distributed Among 5 Students, When(I) No Student Gets More than One Prize?(Ii) a Student May Get Any Number of Prizes? - Mathematics

Advertisements
Advertisements

प्रश्न

In how many ways can 4 prizes be distributed among 5 students, when
(i) no student gets more than one prize?
(ii) a student may get any number of prizes?
(iii) no student gets all the prizes?

उत्तर

(i) Since no student gets more than one prize; the first prize can be given to any one of the five students.
The second prize can be given to anyone of the remaining 4 students.Similarly, the third prize can be given to any one of the remaining 3 students.
The last prize can be given to any one of the remaining 2 students.
    ∴ Required number of ways =`5xx4xx3xx2=5!`

(ii) Since a student may get any number of prizes, the first prize can be given to any of the five students. Similarly, the rest of the three prizes can be given to the each of the remaining 4 students.
∴ Required number of ways =`5xx5xx5xx5=625`

(iii) None of the students gets all the prizes.
  ∴ Required number of ways = {Total ways of distributing the prizes in a condition wherein a student may get any number of prizes - Total ways in a condition in which a student receives all the prizes} =`625-5=620`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.2 | Q 47 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate 4! – 3!


Evaluate `(n!)/((n-r)!)`, when n = 9, r = 5


Find r if `""^5P_r = 2^6 P_(r-1)`


In how many ways can the letters of the word PERMUTATIONS be arranged if the words start with P and end with S.


A customer forgets a four-digits code for an Automatic Teller Machine (ATM) in a bank. However, he remembers that this code consists of digits 3, 5, 6 and 9. Find the largest possible number of trials necessary to obtain the correct code.


In how many ways can three jobs I, II and III be assigned to three persons AB and C if one person is assigned only one job and all are capable of doing each job?


How many three digit numbers can be formed by using the digits 0, 1, 3, 5, 7 while each digit may be repeated any number of times?


How many 5-digit telephone numbers can be constructed using the digits 0 to 9. If each number starts with 67 and no digit appears more than once?


Evaluate each of the following:

10P

In how many ways can 4 letters be posted in 5 letter boxes?


The number of words that can be formed out of the letters of the word "ARTICLE" so that vowels occupy even places is


The number of ways to arrange the letters of the word CHEESE are


The number of ways in which 6 men can be arranged in a row so that three particular men are consecutive, is


The number of words that can be made by re-arranging the letters of the word APURBA so that vowels and consonants are alternate is


The number of different ways in which 8 persons can stand in a row so that between two particular persons A and B there are always two persons, is


English alphabet has 11 symmetric letters that appear same when looked at in a mirror. These letters are A, H, I, M, O, T, U, V, W, X and Y. How many symmetric three letters passwords can be formed using these letters?


In how many ways 5 boys and 3 girls can be seated in a row, so that no two girls are together?


Find the number of arrangements that can be made out of the letters of the word “ASSASSINATION”.


Find the rank of the word ‘CHAT’ in the dictionary.


Evaluate the following.

`(3! + 1!)/(2^2!)`


The number of permutation of n different things taken r at a time, when the repetition is allowed is:


If `""^(("n"  – 1))"P"_3 : ""^"n""P"_4` = 1 : 10 find n


If `""^10"P"_("r" - 1)` = 2 × 6Pr, find r


Determine the number of permutations of the letters of the word SIMPLE if all are taken at a time?


A test consists of 10 multiple choice questions. In how many ways can the test be answered if the first four questions have three choices and the remaining have five choices?


A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.

What is the maximum number of different answers can the students give?


8 women and 6 men are standing in a line. How many arrangements are possible if any individual can stand in any position?


8 women and 6 men are standing in a line. In how many arrangements will no two men be standing next to one another?


Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are divisible by 4?


If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
DANGER


Choose the correct alternative:
The product of r consecutive positive integers is divisible b


How many words can be formed with the letters of the word MANAGEMENT by rearranging them?


Find the number of permutations of n different things taken r at a time such that two specific things occur together.


Ten different letters of alphabet are given. Words with five letters are formed from these given letters. Then the number of words which have atleast one letter repeated is ______.


There are 10 persons named P1, P2, P3, ... P10. Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.


A five-digit number divisible by 3 is to be formed using the numbers 0, 1, 2, 3, 4 and 5 without repetitions. The total number of ways this can be done is ______.


The number of permutations of n different objects, taken r at a line, when repetitions are allowed, is ______.


Five boys and five girls form a line. Find the number of ways of making the seating arrangement under the following condition:

C1 C2
(a) Boys and girls alternate: (i) 5! × 6!
(b) No two girls sit together : (ii) 10! – 5! 6!
(c) All the girls sit together (iii) (5!)2 + (5!)2
(d) All the girls are never together : (iv) 2! 5! 5!

The number of three-digit even numbers, formed by the digits 0, 1, 3, 4, 6, 7 if the repetition of digits is not allowed, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×