Advertisements
Advertisements
प्रश्न
In how many ways can three jobs I, II and III be assigned to three persons A, B and C if one person is assigned only one job and all are capable of doing each job?
उत्तर
Number of ways of assigning a job to person A = 3
Number of ways of assigning the remaining jobs to person B = 2
(since one job has already been assigned to person A)
The number of ways of assigning the remaining job to person C = 1
Total number of ways of job assignment =`3xx2xx1=6`
APPEARS IN
संबंधित प्रश्न
Evaluate 8!
Evaluate `(n!)/((n-r)!)` when n = 6, r = 2
From a committee of 8 persons, in how many ways can we choose a chairman and a vice chairman assuming one person cannot hold more than one position?
Find r if `""^5P_r = 2^6 P_(r-1)`
How many words, with or without meaning, can be formed using all the letters of the word EQUATION, using each letter exactly once?
In how many ways can the letters of the word PERMUTATIONS be arranged if the words start with P and end with S.
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated ?
Evaluate each of the following:
8P3
Evaluate each of the following:
6P6
Write the total number of possible outcomes in a throw of 3 dice in which at least one of the dice shows an even number.
Write the number of words that can be formed out of the letters of the word 'COMMITTEE' ?
Write the number of ways in which 6 men and 5 women can dine at a round table if no two women sit together ?
Write the number of numbers that can be formed using all for digits 1, 2, 3, 4 ?
The number of six letter words that can be formed using the letters of the word "ASSIST" in which S's alternate with other letters is
If the letters of the word KRISNA are arranged in all possible ways and these words are written out as in a dictionary, then the rank of the word KRISNA is
If in a group of n distinct objects, the number of arrangements of 4 objects is 12 times the number of arrangements of 2 objects, then the number of objects is
The number of words that can be made by re-arranging the letters of the word APURBA so that vowels and consonants are alternate is
The number of ways in which the letters of the word ARTICLE can be arranged so that even places are always occupied by consonants is
English alphabet has 11 symmetric letters that appear same when looked at in a mirror. These letters are A, H, I, M, O, T, U, V, W, X and Y. How many symmetric three letters passwords can be formed using these letters?
Evaluate `("n"!)/("r"!("n" - "r")!)` when n = 5 and r = 2.
In how many ways 5 boys and 3 girls can be seated in a row, so that no two girls are together?
If `""^10"P"_("r" - 1)` = 2 × 6Pr, find r
Suppose 8 people enter an event in a swimming meet. In how many ways could the gold, silver and bronze prizes be awarded?
Three men have 4 coats, 5 waist coats and 6 caps. In how many ways can they wear them?
Determine the number of permutations of the letters of the word SIMPLE if all are taken at a time?
A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
What is the maximum number of different answers can the students give?
How many strings are there using the letters of the word INTERMEDIATE, if the vowels and consonants are alternative
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many distinct 6-digit numbers are there?
If the letters of the word FUNNY are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, find the rank of the word FUNNY
In how many ways can 5 children be arranged in a line such that two particular children of them are never together.
In how many ways 3 mathematics books, 4 history books, 3 chemistry books and 2 biology books can be arranged on a shelf so that all books of the same subjects are together.
Suppose m men and n women are to be seated in a row so that no two women sit together. If m > n, show that the number of ways in which they can be seated is `(m!(m + 1)!)/((m - n + 1)1)`
Three married couples are to be seated in a row having six seats in a cinema hall. If spouses are to be seated next to each other, in how many ways can they be seated? Find also the number of ways of their seating if all the ladies sit together.
Ten different letters of alphabet are given. Words with five letters are formed from these given letters. Then the number of words which have atleast one letter repeated is ______.
Find the number of different words that can be formed from the letters of the word ‘TRIANGLE’ so that no vowels are together
The total number of 9 digit numbers which have all different digits is ______.
The number of words which can be formed out of the letters of the word ARTICLE, so that vowels occupy the even place is ______.
The number of three-digit even numbers, formed by the digits 0, 1, 3, 4, 6, 7 if the repetition of digits is not allowed, is ______.
If m+nP2 = 90 and m–nP2 = 30, then (m, n) is given by ______.