मराठी

The Number of Ways in Which the Letters of the Word Article Can Be Arranged So that Even Places Are Always Occupied by Consonants Is, 576 , 4c3 × 4!, 2 × 4! , None of These. - Mathematics

Advertisements
Advertisements

प्रश्न

The number of ways in which the letters of the word ARTICLE can be arranged so that even places are always occupied by consonants is

पर्याय

  • 576

  • 4C3 × 4!

  • 2 × 4!

  • none of these.

MCQ

उत्तर

576

There are 3 even places in the 7 letter word ARTICLE.
So, we have to arrange 4 consonants in these 3 places in 4P3 ways.
And the remaining 4 letters can be arranged among themselves in 4! ways.
∴ Total number of ways of arrangement  = 4Px 4! = 4! x 4! = 576

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.7 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.7 | Q 21 | पृष्ठ ४७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate 4! – 3!


How many 3-digit even numbers can be made using the digits 1, 2, 3, 4, 6, 7, if no digit is repeated?


From a committee of 8 persons, in how many ways can we choose a chairman and a vice chairman assuming one person cannot hold more than one position?


Find r if `""^5P_r = ""^6P_(r-1)`


Which of the following are true:

(2 +3)! = 2! + 3!


In how many ways can three jobs I, II and III be assigned to three persons AB and C if one person is assigned only one job and all are capable of doing each job?


If three six faced die each marked with numbers 1 to 6 on six faces, are thrown find the total number of possible outcomes ?


Find the number of ways in which one can post 5 letters in 7 letter boxes ?


In how many ways can 7 letters be posted in 4 letter boxes?


In how many ways can 4 prizes be distributed among 5 students, when
(i) no student gets more than one prize?
(ii) a student may get any number of prizes?
(iii) no student gets all the prizes?


Evaluate each of the following:

10P

Write the number of arrangements of the letters of the word BANANA in which two N's come together.


Write the remainder obtained when 1! + 2! + 3! + ... + 200! is divided by 14 ?


The number of five-digit telephone numbers having at least one of their digits repeated is


The number of different signals which can be given from 6 flags of different colours taking one or more at a time, is


The number of arrangements of the word "DELHI" in which E precedes I is


The product of r consecutive positive integers is divisible by


How many numbers lesser than 1000 can be formed using the digits 5, 6, 7, 8, and 9 if no digit is repeated?


The number of words with or without meaning that can be formed using letters of the word “EQUATION”, with no repetition of letters is:


Determine the number of permutations of the letters of the word SIMPLE if all are taken at a time?


A test consists of 10 multiple choice questions. In how many ways can the test be answered if question number n has n + 1 choices?


A coin is tossed 8 times, how many different sequences containing six heads and two tails are possible?


How many strings are there using the letters of the word INTERMEDIATE, if all the vowels are together


How many strings are there using the letters of the word INTERMEDIATE, if no two vowels are together


Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are even?


Find the number of strings that can be made using all letters of the word THING. If these words are written as in a dictionary, what will be the 85th string?


Find the sum of all 4-digit numbers that can be formed using digits 1, 2, 3, 4, and 5 repetitions not allowed?


Find the sum of all 4-digit numbers that can be formed using digits 0, 2, 5, 7, 8 without repetition?


How many words can be formed with the letters of the word MANAGEMENT by rearranging them?


Suppose m men and n women are to be seated in a row so that no two women sit together. If m > n, show that the number of ways in which they can be seated is `(m!(m + 1)!)/((m - n + 1)1)`


The number of signals that can be sent by 6 flags of different colours taking one or more at a time is ______.


In a certain city, all telephone numbers have six digits, the first two digits always being 41 or 42 or 46 or 62 or 64. How many telephone numbers have all six digits distinct?


The number of different words that can be formed from the letters of the word INTERMEDIATE such that two vowels never come together is ______.


Five boys and five girls form a line. Find the number of ways of making the seating arrangement under the following condition:

C1 C2
(a) Boys and girls alternate: (i) 5! × 6!
(b) No two girls sit together : (ii) 10! – 5! 6!
(c) All the girls sit together (iii) (5!)2 + (5!)2
(d) All the girls are never together : (iv) 2! 5! 5!

If 1P1 + 2. 2p2 + 3. 3p3 + ....... 15. 15P15 = qPr – s, 0 ≤ s ≤ 1, then q+sCr–s is equal to ______.


If the letters of the word 'MOTHER' be permuted and all the words so formed (with or without meaning) be listed as in a dictionary, then the position of the word 'MOTHER' is ______.


Ten different letters of an alphabet are given. Words with five letters are formed from these given letters. Determine the number of words which have at least one letter repeated.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×