Advertisements
Advertisements
प्रश्न
How many words, with or without meaning, can be formed using all the letters of the word EQUATION, using each letter exactly once?
उत्तर
There are 8 different letters in the word EQUATION.
Number of words formed from these letters (with or without meaning) = `(8!)/((8 - 8)!) = 8!`
= 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1
= 40320
APPEARS IN
संबंधित प्रश्न
Compute `(8!)/(6! xx 2!)`
if `1/(6!) + 1/(7!) = x/(8!)`, find x
Evaluate `(n!)/((n-r)!)` when n = 6, r = 2
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
From a committee of 8 persons, in how many ways can we choose a chairman and a vice chairman assuming one person cannot hold more than one position?
Find r if `""^5P_r = 2^6 P_(r-1)`
Find r if `""^5P_r = ""^6P_(r-1)`
How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if
(i) 4 letters are used at a time,
(ii) all letters are used at a time,
(iii) all letters are used but first letter is a vowel?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S’s are together?
How many natural numbers not exceeding 4321 can be formed with the digits 1, 2, 3 and 4, if the digits can repeat?
In how many ways can 7 letters be posted in 4 letter boxes?
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated ?
Evaluate each of the following:
8P3
Write the number of numbers that can be formed using all for digits 1, 2, 3, 4 ?
How many numbers greater than 10 lacs be formed from 2, 3, 0, 3, 4, 2, 3 ?
The product of r consecutive positive integers is divisible by
How many numbers lesser than 1000 can be formed using the digits 5, 6, 7, 8, and 9 if no digit is repeated?
Find the rank of the word ‘CHAT’ in the dictionary.
If n is a positive integer, then the number of terms in the expansion of (x + a)n is:
The number of ways to arrange the letters of the word “CHEESE”:
The number of words with or without meaning that can be formed using letters of the word “EQUATION”, with no repetition of letters is:
If `""^(("n" – 1))"P"_3 : ""^"n""P"_4` = 1 : 10 find n
Determine the number of permutations of the letters of the word SIMPLE if all are taken at a time?
A test consists of 10 multiple choice questions. In how many ways can the test be answered if the first four questions have three choices and the remaining have five choices?
A test consists of 10 multiple choice questions. In how many ways can the test be answered if question number n has n + 1 choices?
8 women and 6 men are standing in a line. In how many arrangements will no two men be standing next to one another?
In how many ways can 5 children be arranged in a line such that two particular children of them are never together.
If all permutations of the letters of the word AGAIN are arranged in the order as in a dictionary. What is the 49th word?
Three married couples are to be seated in a row having six seats in a cinema hall. If spouses are to be seated next to each other, in how many ways can they be seated? Find also the number of ways of their seating if all the ladies sit together.
Find the number of different words that can be formed from the letters of the word ‘TRIANGLE’ so that no vowels are together
There are 10 persons named P1, P2, P3, ... P10. Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
The number of permutations of n different objects, taken r at a line, when repetitions are allowed, is ______.
In the permutations of n things, r taken together, the number of permutations in which m particular things occur together is `""^(n - m)"P"_(r - m) xx ""^r"P"_m`.
Five boys and five girls form a line. Find the number of ways of making the seating arrangement under the following condition:
C1 | C2 |
(a) Boys and girls alternate: | (i) 5! × 6! |
(b) No two girls sit together : | (ii) 10! – 5! 6! |
(c) All the girls sit together | (iii) (5!)2 + (5!)2 |
(d) All the girls are never together : | (iv) 2! 5! 5! |