Advertisements
Advertisements
प्रश्न
If all permutations of the letters of the word AGAIN are arranged in the order as in a dictionary. What is the 49th word?
उत्तर
n Starting with letter A, and arranging the other four letters, there are 4! = 24 words.
These are the first 24 words.
Then starting with G, and arranging A, A, I and N in different ways
There are `(4!)/(2!1!1!)` = 12 words.
Next the 37th word starts with I.
There are again 12 words starting with I.
This accounts up to the 48th word.
The 49th word is NAAGI.
APPEARS IN
संबंधित प्रश्न
Compute `(8!)/(6! xx 2!)`
if `1/(6!) + 1/(7!) = x/(8!)`, find x
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5 if no digit is repeated. How many of these will be even?
Find n if n – 1P3 : nP4 = 1 : 9
Find r if `""^5P_r = 2^6 P_(r-1)`
In how many ways can the letters of the word PERMUTATIONS be arranged if the there are always 4 letters between P and S?
How many numbers of six digits can be formed from the digits 0, 1, 3, 5, 7 and 9 when no digit is repeated? How many of them are divisible by 10 ?
A coin is tossed three times and the outcomes are recorded. How many possible outcomes are there? How many possible outcomes if the coin is tossed four times? Five times? n times?
Evaluate each of the following:
Write the remainder obtained when 1! + 2! + 3! + ... + 200! is divided by 14 ?
The number of five-digit telephone numbers having at least one of their digits repeated is
The number of arrangements of the word "DELHI" in which E precedes I is
The number of ways in which the letters of the word 'CONSTANT' can be arranged without changing the relative positions of the vowels and consonants is
If the letters of the word KRISNA are arranged in all possible ways and these words are written out as in a dictionary, then the rank of the word KRISNA is
If in a group of n distinct objects, the number of arrangements of 4 objects is 12 times the number of arrangements of 2 objects, then the number of objects is
If k + 5Pk + 1 =\[\frac{11 (k - 1)}{2}\]. k + 3Pk , then the values of k are
Find the rank of the word ‘CHAT’ in the dictionary.
Evaluate the following.
`(3! + 1!)/(2^2!)`
If n is a positive integer, then the number of terms in the expansion of (x + a)n is:
Suppose 8 people enter an event in a swimming meet. In how many ways could the gold, silver and bronze prizes be awarded?
A test consists of 10 multiple choice questions. In how many ways can the test be answered if the first four questions have three choices and the remaining have five choices?
A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
What is the maximum number of different answers can the students give?
How many strings are there using the letters of the word INTERMEDIATE, if all the vowels are together
Choose the correct alternative:
If `""^(("n" + 5))"P"_(("n" + 1)) = ((11("n" - 1))/2)^(("n" + 3))"P"_"n"`, then the value of n are
How many words can be formed with the letters of the word MANAGEMENT by rearranging them?
A five-digit number divisible by 3 is to be formed using the numbers 0, 1, 2, 3, 4 and 5 without repetitions. The total number of ways this can be done is ______.
The number of words which can be formed out of the letters of the word ARTICLE, so that vowels occupy the even place is ______.
The number of different words that can be formed from the letters of the word INTERMEDIATE such that two vowels never come together is ______.
8-digit numbers are formed using the digits 1, 1, 2, 2, 2, 3, 4, 4. The number of such numbers in which the odd digits do no occupy odd places is ______.