मराठी

Compute 8!6!×2! - Mathematics

Advertisements
Advertisements

प्रश्न

Compute `(8!)/(6! xx 2!)`

बेरीज

उत्तर

`(8!)/(6! xx 2!)  = (8 xx 7 xx 6!)/(6! xx 2 xx 1) = (8 xx 7)/2  = 28`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Permutations and Combinations - Exercise 7.2 [पृष्ठ १४१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 7 Permutations and Combinations
Exercise 7.2 | Q 3 | पृष्ठ १४१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate 8!


if `1/(6!) + 1/(7!) = x/(8!)`, find x


How many words, with or without meaning, can be formed using all the letters of the word EQUATION, using each letter exactly once?


Find x in each of the following:

\[\frac{1}{4!} + \frac{1}{5!} = \frac{x}{6!}\]

Find x in each of the following:

\[\frac{x}{10!} = \frac{1}{8!} + \frac{1}{9!}\]

How many numbers of six digits can be formed from the digits 0, 1, 3, 5, 7 and 9 when no digit is repeated? How many of them are divisible by 10 ?


How many three digit numbers can be formed by using the digits 0, 1, 3, 5, 7 while each digit may be repeated any number of times?


There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated ?


Evaluate each of the following:

8P3


Evaluate each of the following:

10P

Evaluate each of the following:

P(6, 4)


In how many ways 4 women draw water from 4 taps, if no tap remains unused?


Write the number of ways in which 7 men and 7 women can sit on a round table such that no two women sit together ?


Write the number of words that can be formed out of the letters of the word 'COMMITTEE' ?


Write the number of ways in which 6 men and 5 women can dine at a round table if no two women sit together ?


Write the number of ways in which 5 boys and 3 girls can be seated in a row so that each girl is between 2 boys ?


The number of different signals which can be given from 6 flags of different colours taking one or more at a time, is


Number of all four digit numbers having different digits formed of the digits 1, 2, 3, 4 and 5 and divisible by 4 is


A 5-digit number divisible by 3 is to be formed using the digits 0, 1, 2, 3, 4 and 5 without repetition. The total number of ways in which this can be done is


The number of words that can be made by re-arranging the letters of the word APURBA so that vowels and consonants are alternate is


In a room there are 12 bulbs of the same wattage, each having a separate switch. The number of ways to light the room with different amounts of illumination is


Evaluate the following.

`((3!)! xx 2!)/(5!)`


If n is a positive integer, then the number of terms in the expansion of (x + a)n is:


For all n > 0, nC1 + nC2 + nC3 + …… + nCn is equal to:


The total number of 9 digit number which has all different digit is:


8 women and 6 men are standing in a line. How many arrangements are possible if any individual can stand in any position?


8 women and 6 men are standing in a line. In how many arrangements will all 6 men be standing next to one another?


How many ways can the product a2 b3 c4 be expressed without exponents?


A coin is tossed 8 times, how many different sequences of heads and tails are possible?


A coin is tossed 8 times, how many different sequences containing six heads and two tails are possible?


If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
DANGER


Choose the correct alternative:
The product of r consecutive positive integers is divisible b


In how many ways 3 mathematics books, 4 history books, 3 chemistry books and 2 biology books can be arranged on a shelf so that all books of the same subjects are together.


Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.


A five-digit number divisible by 3 is to be formed using the numbers 0, 1, 2, 3, 4 and 5 without repetitions. The total number of ways this can be done is ______.


Using the digits 1, 2, 3, 4, 5, 6, 7, a number of 4 different digits is formed. Find

C1 C2
(a) How many numbers are formed? (i) 840
(b) How many number are exactly divisible by 2? (i) 200
(c) How many numbers are exactly divisible by 25? (iii) 360
(d) How many of these are exactly divisible by 4? (iv) 40

The number of permutations by taking all letters and keeping the vowels of the word ‘COMBINE’ in the odd places is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×