Advertisements
Advertisements
Question
Compute `(8!)/(6! xx 2!)`
Solution
`(8!)/(6! xx 2!) = (8 xx 7 xx 6!)/(6! xx 2 xx 1) = (8 xx 7)/2 = 28`
APPEARS IN
RELATED QUESTIONS
Evaluate 4! – 3!
Is 3! + 4! = 7!?
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
How many 3-digit even numbers can be made using the digits 1, 2, 3, 4, 6, 7, if no digit is repeated?
Find x in each of the following:
Find the number of ways in which one can post 5 letters in 7 letter boxes ?
Evaluate each of the following:
P(6, 4)
In how many ways 4 women draw water from 4 taps, if no tap remains unused?
Write the total number of possible outcomes in a throw of 3 dice in which at least one of the dice shows an even number.
Write the number of arrangements of the letters of the word BANANA in which two N's come together.
Write the number of ways in which 7 men and 7 women can sit on a round table such that no two women sit together ?
Write the number of words that can be formed out of the letters of the word 'COMMITTEE' ?
The number of five-digit telephone numbers having at least one of their digits repeated is
The number of different signals which can be given from 6 flags of different colours taking one or more at a time, is
The number of six letter words that can be formed using the letters of the word "ASSIST" in which S's alternate with other letters is
The number of ways in which the letters of the word 'CONSTANT' can be arranged without changing the relative positions of the vowels and consonants is
English alphabet has 11 symmetric letters that appear same when looked at in a mirror. These letters are A, H, I, M, O, T, U, V, W, X and Y. How many symmetric three letters passwords can be formed using these letters?
If (n+2)! = 60[(n–1)!], find n
How many five digits telephone numbers can be constructed using the digits 0 to 9 If each number starts with 67 with no digit appears more than once?
Evaluate the following.
`((3!)! xx 2!)/(5!)`
If n is a positive integer, then the number of terms in the expansion of (x + a)n is:
Three men have 4 coats, 5 waist coats and 6 caps. In how many ways can they wear them?
A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
How will the answer change if each question may have more than one correct answers?
8 women and 6 men are standing in a line. In how many arrangements will all 6 men be standing next to one another?
Find the distinct permutations of the letters of the word MISSISSIPPI?
In how many ways 4 mathematics books, 3 physics books, 2 chemistry books and 1 biology book can be arranged on a shelf so that all books of the same subjects are together
A coin is tossed 8 times, how many different sequences of heads and tails are possible?
Find the number of strings that can be made using all letters of the word THING. If these words are written as in a dictionary, what will be the 85th string?
Choose the correct alternative:
If `""^(("n" + 5))"P"_(("n" + 1)) = ((11("n" - 1))/2)^(("n" + 3))"P"_"n"`, then the value of n are
The number of arrangements of the letters of the word BANANA in which two N's do not appear adjacently is ______.
In how many ways can 5 children be arranged in a line such that two particular children of them are never together.
There are 10 persons named P1, P2, P3, ... P10. Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
The total number of 9 digit numbers which have all different digits is ______.
The number of words which can be formed out of the letters of the word ARTICLE, so that vowels occupy the even place is ______.
In the permutations of n things, r taken together, the number of permutations in which m particular things occur together is `""^(n - m)"P"_(r - m) xx ""^r"P"_m`.
Let b1, b2, b3, b4 be a 4-element permutation with bi ∈ {1, 2, 3, .......,100} for 1 ≤ i ≤ 4 and bi ≠ bj for i ≠ j, such that either b1, b2, b3 are consecutive integers or b2, b3, b4 are consecutive integers. Then the number of such permutations b1, b2, b3, b4 is equal to ______.
If 1P1 + 2. 2p2 + 3. 3p3 + ....... 15. 15P15 = qPr – s, 0 ≤ s ≤ 1, then q+sCr–s is equal to ______.
The number of three-digit even numbers, formed by the digits 0, 1, 3, 4, 6, 7 if the repetition of digits is not allowed, is ______.