Advertisements
Advertisements
Question
Write the number of arrangements of the letters of the word BANANA in which two N's come together.
Solution
The word BANANA consists of 6 letters including three As and two Ns.
Considering both Ns together or as a single letter, we are left with 5 letters including three As.
∴ Number of arrangements of 5 things in which 3 are similar to one kind =\[\frac{5!}{3!}\]= 20
APPEARS IN
RELATED QUESTIONS
if `1/(6!) + 1/(7!) = x/(8!)`, find x
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5 if no digit is repeated. How many of these will be even?
From a committee of 8 persons, in how many ways can we choose a chairman and a vice chairman assuming one person cannot hold more than one position?
In how many ways can the letters of the word PERMUTATIONS be arranged if the words start with P and end with S.
In how many ways can the letters of the word PERMUTATIONS be arranged if the vowels are all together.
How many numbers of six digits can be formed from the digits 0, 1, 3, 5, 7 and 9 when no digit is repeated? How many of them are divisible by 10 ?
Evaluate each of the following:
6P6
Evaluate each of the following:
P(6, 4)
Write the remainder obtained when 1! + 2! + 3! + ... + 200! is divided by 14 ?
The number of words from the letters of the word 'BHARAT' in which B and H will never come together, is
The number of six letter words that can be formed using the letters of the word "ASSIST" in which S's alternate with other letters is
The number of ways in which 6 men can be arranged in a row so that three particular men are consecutive, is
A 5-digit number divisible by 3 is to be formed using the digits 0, 1, 2, 3, 4 and 5 without repetition. The total number of ways in which this can be done is
The product of r consecutive positive integers is divisible by
If k + 5Pk + 1 =\[\frac{11 (k - 1)}{2}\]. k + 3Pk , then the values of k are
The number of ways in which the letters of the word ARTICLE can be arranged so that even places are always occupied by consonants is
In a room there are 12 bulbs of the same wattage, each having a separate switch. The number of ways to light the room with different amounts of illumination is
How many five digits telephone numbers can be constructed using the digits 0 to 9 If each number starts with 67 with no digit appears more than once?
In how many ways 5 boys and 3 girls can be seated in a row, so that no two girls are together?
Evaluate the following.
`(3! xx 0! + 0!)/(2!)`
Evaluate the following.
`((3!)! xx 2!)/(5!)`
Determine the number of permutations of the letters of the word SIMPLE if all are taken at a time?
A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
How will the answer change if each question may have more than one correct answers?
How many strings can be formed from the letters of the word ARTICLE, so that vowels occupy the even places?
8 women and 6 men are standing in a line. In how many arrangements will all 6 men be standing next to one another?
In how many ways 4 mathematics books, 3 physics books, 2 chemistry books and 1 biology book can be arranged on a shelf so that all books of the same subjects are together
A coin is tossed 8 times, how many different sequences of heads and tails are possible?
How many strings are there using the letters of the word INTERMEDIATE, if vowels are never together
How many strings are there using the letters of the word INTERMEDIATE, if no two vowels are together
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
DANGER
Choose the correct alternative:
If Pr stands for rPr then the sum of the series 1 + P1 + 2P2 + 3P3 + · · · + nPn is
In how many ways can 5 children be arranged in a line such that two particular children of them are never together.
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
Let b1, b2, b3, b4 be a 4-element permutation with bi ∈ {1, 2, 3, .......,100} for 1 ≤ i ≤ 4 and bi ≠ bj for i ≠ j, such that either b1, b2, b3 are consecutive integers or b2, b3, b4 are consecutive integers. Then the number of such permutations b1, b2, b3, b4 is equal to ______.
If 1P1 + 2. 2p2 + 3. 3p3 + ....... 15. 15P15 = qPr – s, 0 ≤ s ≤ 1, then q+sCr–s is equal to ______.