Advertisements
Advertisements
Question
if `1/(6!) + 1/(7!) = x/(8!)`, find x
Solution
`1/(6!) + 1/(7!) = x/(8!)`
⇒ `1/(6!) + 1/(7 xx 6!) = x/(8 xx 7 xx 6!)`
⇒ `1/(6!) (1 + 1/7) = x/(8 xx 7 xx 6!)`
⇒ `1 + 1/7 = x/(8 xx 7)`
⇒ `8/7 = x/(8 xx 7)`
⇒ x = `(8 xx 8 xx 7)/7`
∴ x = 64
APPEARS IN
RELATED QUESTIONS
Evaluate `(n!)/((n-r)!)`, when n = 9, r = 5
Find r if `""^5P_r = 2^6 P_(r-1)`
Find r if `""^5P_r = 2^6 P_(r-1)`
How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if
(i) 4 letters are used at a time,
(ii) all letters are used at a time,
(iii) all letters are used but first letter is a vowel?
Which of the following are true:
(2 × 3)! = 2! × 3!
How many natural numbers not exceeding 4321 can be formed with the digits 1, 2, 3 and 4, if the digits can repeat?
How many numbers of four digits can be formed with the digits 1, 2, 3, 4, 5 if the digits can be repeated in the same number?
How many three digit numbers can be formed by using the digits 0, 1, 3, 5, 7 while each digit may be repeated any number of times?
In how many ways can 7 letters be posted in 4 letter boxes?
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated ?
Write the total number of possible outcomes in a throw of 3 dice in which at least one of the dice shows an even number.
Write the number of arrangements of the letters of the word BANANA in which two N's come together.
The number of five-digit telephone numbers having at least one of their digits repeated is
How many numbers greater than 10 lacs be formed from 2, 3, 0, 3, 4, 2, 3 ?
The number of six letter words that can be formed using the letters of the word "ASSIST" in which S's alternate with other letters is
The number of words that can be made by re-arranging the letters of the word APURBA so that vowels and consonants are alternate is
In a room there are 12 bulbs of the same wattage, each having a separate switch. The number of ways to light the room with different amounts of illumination is
How many 6-digit telephone numbers can be constructed with the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each numbers starts with 35 and no digit appear more than once?
Evaluate the following.
`(3! xx 0! + 0!)/(2!)`
Evaluate the following.
`((3!)! xx 2!)/(5!)`
If n is a positive integer, then the number of terms in the expansion of (x + a)n is:
The total number of 9 digit number which has all different digit is:
The number of permutation of n different things taken r at a time, when the repetition is allowed is:
A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
What is the maximum number of different answers can the students give?
8 women and 6 men are standing in a line. In how many arrangements will no two men be standing next to one another?
How many ways can the product a2 b3 c4 be expressed without exponents?
How many strings are there using the letters of the word INTERMEDIATE, if the vowels and consonants are alternative
How many strings are there using the letters of the word INTERMEDIATE, if no two vowels are together
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
GARDEN
Choose the correct alternative:
The product of r consecutive positive integers is divisible b
A five-digit number divisible by 3 is to be formed using the numbers 0, 1, 2, 3, 4 and 5 without repetitions. The total number of ways this can be done is ______.
The number of permutations of n different objects, taken r at a line, when repetitions are allowed, is ______.
The number of different words that can be formed from the letters of the word INTERMEDIATE such that two vowels never come together is ______.
In the permutations of n things, r taken together, the number of permutations in which m particular things occur together is `""^(n - m)"P"_(r - m) xx ""^r"P"_m`.
The number of three-digit even numbers, formed by the digits 0, 1, 3, 4, 6, 7 if the repetition of digits is not allowed, is ______.
Ten different letters of an alphabet are given. Words with five letters are formed from these given letters. Determine the number of words which have at least one letter repeated.
If m+nP2 = 90 and m–nP2 = 30, then (m, n) is given by ______.