Advertisements
Advertisements
Question
8 women and 6 men are standing in a line. In how many arrangements will no two men be standing next to one another?
Solution
Since no two men be together they have to be placed between
8 women and before and after the women.
w | w | w | w | w | w | w | w
There are 9 places so the 6 men can be arranged in the 9 places in 9P6 ways.
After this arrangement, the 8 women can be arranged in 8! ways.
∴ Total number of arrangements = (9P6) × 8!
APPEARS IN
RELATED QUESTIONS
Evaluate `(n!)/((n-r)!)` when n = 6, r = 2
Evaluate `(n!)/((n-r)!)`, when n = 9, r = 5
How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if
(i) 4 letters are used at a time,
(ii) all letters are used at a time,
(iii) all letters are used but first letter is a vowel?
In how many of the distinct permutations of the letters in MISSISSIPPI do the four I’s not come together?
Find x in each of the following:
Find x in each of the following:
A coin is tossed three times and the outcomes are recorded. How many possible outcomes are there? How many possible outcomes if the coin is tossed four times? Five times? n times?
In how many ways can 5 different balls be distributed among three boxes?
In how many ways can 7 letters be posted in 4 letter boxes?
In how many ways can 4 prizes be distributed among 5 students, when
(i) no student gets more than one prize?
(ii) a student may get any number of prizes?
(iii) no student gets all the prizes?
Write the number of ways in which 6 men and 5 women can dine at a round table if no two women sit together ?
The number of arrangements of the letters of the word BHARAT taking 3 at a time is
Find x if `1/(6!) + 1/(7!) = x/(8!)`
If nP4 = 12(nP2), find n.
The number of ways to arrange the letters of the word “CHEESE”:
In how many ways 4 mathematics books, 3 physics books, 2 chemistry books and 1 biology book can be arranged on a shelf so that all books of the same subjects are together
A coin is tossed 8 times, how many different sequences containing six heads and two tails are possible?
Find the number of strings that can be made using all letters of the word THING. If these words are written as in a dictionary, what will be the 85th string?
In how many ways can 5 children be arranged in a line such that two particular children of them are always together
Let b1, b2, b3, b4 be a 4-element permutation with bi ∈ {1, 2, 3, .......,100} for 1 ≤ i ≤ 4 and bi ≠ bj for i ≠ j, such that either b1, b2, b3 are consecutive integers or b2, b3, b4 are consecutive integers. Then the number of such permutations b1, b2, b3, b4 is equal to ______.