Advertisements
Advertisements
प्रश्न
Find the number of different words that can be formed from the letters of the word ‘TRIANGLE’ so that no vowels are together
उत्तर
Total number of words in ‘TRIANGLE’ = 8
Out of 5 are consonants and 3 are vowels
If vowels are not together, taken we have the following arrangement
V | C | V | C | V | C | V | C | V | C | V
Consonant can be arranged in 5! = 120 ways
Vowel occupy 6 places
∴ 3 vowels can be arranged in 6 places = 6P3
= `(6!)/((6 - 3)!)`
= `(6!)/(3!)`
= 120 ways
So, the total arrangement = 120 × 120 = 14400 ways
Here, the required arrangement = 14400 ways.
APPEARS IN
संबंधित प्रश्न
Compute `(8!)/(6! xx 2!)`
Find x in each of the following:
Which of the following are true:
(2 × 3)! = 2! × 3!
A customer forgets a four-digits code for an Automatic Teller Machine (ATM) in a bank. However, he remembers that this code consists of digits 3, 5, 6 and 9. Find the largest possible number of trials necessary to obtain the correct code.
In how many ways can three jobs I, II and III be assigned to three persons A, B and C if one person is assigned only one job and all are capable of doing each job?
How many 5-digit telephone numbers can be constructed using the digits 0 to 9. If each number starts with 67 and no digit appears more than once?
In how many ways can 5 different balls be distributed among three boxes?
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated ?
Evaluate each of the following:
In how many ways can 4 letters be posted in 5 letter boxes?
Write the total number of possible outcomes in a throw of 3 dice in which at least one of the dice shows an even number.
Write the remainder obtained when 1! + 2! + 3! + ... + 200! is divided by 14 ?
The number of different signals which can be given from 6 flags of different colours taking one or more at a time, is
Number of all four digit numbers having different digits formed of the digits 1, 2, 3, 4 and 5 and divisible by 4 is
If the letters of the word KRISNA are arranged in all possible ways and these words are written out as in a dictionary, then the rank of the word KRISNA is
The number of ways in which 6 men can be arranged in a row so that three particular men are consecutive, is
If k + 5Pk + 1 =\[\frac{11 (k - 1)}{2}\]. k + 3Pk , then the values of k are
The number of different ways in which 8 persons can stand in a row so that between two particular persons A and B there are always two persons, is
If `""^10"P"_("r" - 1)` = 2 × 6Pr, find r
A test consists of 10 multiple choice questions. In how many ways can the test be answered if each question has four choices?
A test consists of 10 multiple choice questions. In how many ways can the test be answered if the first four questions have three choices and the remaining have five choices?
A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
What is the maximum number of different answers can the students give?
8 women and 6 men are standing in a line. How many arrangements are possible if any individual can stand in any position?
How many strings are there using the letters of the word INTERMEDIATE, if no two vowels are together
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
GARDEN
The number of arrangements of the letters of the word BANANA in which two N's do not appear adjacently is ______.
In how many ways can 5 children be arranged in a line such that two particular children of them are always together
If all permutations of the letters of the word AGAIN are arranged in the order as in a dictionary. What is the 49th word?
A five-digit number divisible by 3 is to be formed using the numbers 0, 1, 2, 3, 4 and 5 without repetitions. The total number of ways this can be done is ______.