Advertisements
Advertisements
प्रश्न
In how many ways can 5 different balls be distributed among three boxes?
उत्तर
Each ball can be distributed in 3 ways.
∴ Required number of ways in order to distribute 5 balls =`3xx3xx3xx3xx3=243`
APPEARS IN
संबंधित प्रश्न
Evaluate 8!
if `1/(6!) + 1/(7!) = x/(8!)`, find x
How many 4-digit numbers are there with no digit repeated?
How many 3-digit even numbers can be made using the digits 1, 2, 3, 4, 6, 7, if no digit is repeated?
From a committee of 8 persons, in how many ways can we choose a chairman and a vice chairman assuming one person cannot hold more than one position?
How many words, with or without meaning, can be formed using all the letters of the word EQUATION, using each letter exactly once?
In how many ways can the letters of the word PERMUTATIONS be arranged if the vowels are all together.
Find x in each of the following:
Find x in each of the following:
Which of the following are true:
(2 × 3)! = 2! × 3!
A coin is tossed three times and the outcomes are recorded. How many possible outcomes are there? How many possible outcomes if the coin is tossed four times? Five times? n times?
Find the number of ways in which 8 distinct toys can be distributed among 5 childrens.
In how many ways can 7 letters be posted in 4 letter boxes?
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated ?
Write the number of ways in which 5 boys and 3 girls can be seated in a row so that each girl is between 2 boys ?
Write the number of numbers that can be formed using all for digits 1, 2, 3, 4 ?
The number of permutations of n different things taking r at a time when 3 particular things are to be included is
How many numbers greater than 10 lacs be formed from 2, 3, 0, 3, 4, 2, 3 ?
Number of all four digit numbers having different digits formed of the digits 1, 2, 3, 4 and 5 and divisible by 4 is
If the letters of the word KRISNA are arranged in all possible ways and these words are written out as in a dictionary, then the rank of the word KRISNA is
In a room there are 12 bulbs of the same wattage, each having a separate switch. The number of ways to light the room with different amounts of illumination is
How many numbers lesser than 1000 can be formed using the digits 5, 6, 7, 8, and 9 if no digit is repeated?
Find the rank of the word ‘CHAT’ in the dictionary.
Evaluate the following.
`((3!)! xx 2!)/(5!)`
The greatest positive integer which divide n(n + 1) (n + 2) (n + 3) for all n ∈ N is:
Determine the number of permutations of the letters of the word SIMPLE if all are taken at a time?
A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
How will the answer change if each question may have more than one correct answers?
A coin is tossed 8 times, how many different sequences containing six heads and two tails are possible?
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are even?
Choose the correct alternative:
If `""^(("n" + 5))"P"_(("n" + 1)) = ((11("n" - 1))/2)^(("n" + 3))"P"_"n"`, then the value of n are
The number of arrangements of the letters of the word BANANA in which two N's do not appear adjacently is ______.
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
Find the number of different words that can be formed from the letters of the word ‘TRIANGLE’ so that no vowels are together
There are 10 persons named P1, P2, P3, ... P10. Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
In a certain city, all telephone numbers have six digits, the first two digits always being 41 or 42 or 46 or 62 or 64. How many telephone numbers have all six digits distinct?
If the letters of the word 'MOTHER' be permuted and all the words so formed (with or without meaning) be listed as in a dictionary, then the position of the word 'MOTHER' is ______.
The number of permutations by taking all letters and keeping the vowels of the word ‘COMBINE’ in the odd places is ______.