Advertisements
Advertisements
Question
If in a group of n distinct objects, the number of arrangements of 4 objects is 12 times the number of arrangements of 2 objects, then the number of objects is
Options
10
8
6
none of these.
Solution
6
According to the question:
nP4 = 12 x nP2
\[ \Rightarrow \frac{\left( n - 2 \right)!}{\left( n - 4 \right)!} = 12\]
\[ \Rightarrow \left( n - 2 \right)\left( n - 3 \right) = 4 \times 3\]
\[ \Rightarrow n - 2 = 4\]
\[ \Rightarrow n = 6\]
APPEARS IN
RELATED QUESTIONS
How many 4-digit numbers are there with no digit repeated?
How many words, with or without meaning, can be formed using all the letters of the word EQUATION, using each letter exactly once?
Find x in each of the following:
How many three digit numbers can be formed by using the digits 0, 1, 3, 5, 7 while each digit may be repeated any number of times?
How many 5-digit telephone numbers can be constructed using the digits 0 to 9. If each number starts with 67 and no digit appears more than once?
In how many ways can 5 different balls be distributed among three boxes?
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated ?
Evaluate each of the following:
Write the number of 5 digit numbers that can be formed using digits 0, 1 and 2 ?
In how many ways 4 women draw water from 4 taps, if no tap remains unused?
Write the total number of possible outcomes in a throw of 3 dice in which at least one of the dice shows an even number.
The number of different signals which can be given from 6 flags of different colours taking one or more at a time, is
The number of ways in which the letters of the word 'CONSTANT' can be arranged without changing the relative positions of the vowels and consonants is
The product of r consecutive positive integers is divisible by
Find x if `1/(6!) + 1/(7!) = x/(8!)`
How many numbers lesser than 1000 can be formed using the digits 5, 6, 7, 8, and 9 if no digit is repeated?
How many 6-digit telephone numbers can be constructed with the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each numbers starts with 35 and no digit appear more than once?
Evaluate the following.
`((3!)! xx 2!)/(5!)`
The total number of 9 digit number which has all different digit is:
The number of words with or without meaning that can be formed using letters of the word “EQUATION”, with no repetition of letters is:
Three men have 4 coats, 5 waist coats and 6 caps. In how many ways can they wear them?
A test consists of 10 multiple choice questions. In how many ways can the test be answered if question number n has n + 1 choices?
A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
What is the maximum number of different answers can the students give?
8 women and 6 men are standing in a line. How many arrangements are possible if any individual can stand in any position?
Find the distinct permutations of the letters of the word MISSISSIPPI?
In how many ways can the letters of the word SUCCESS be arranged so that all Ss are together?
A coin is tossed 8 times, how many different sequences of heads and tails are possible?
A coin is tossed 8 times, how many different sequences containing six heads and two tails are possible?
How many strings are there using the letters of the word INTERMEDIATE, if all the vowels are together
Choose the correct alternative:
If `""^(("n" + 5))"P"_(("n" + 1)) = ((11("n" - 1))/2)^(("n" + 3))"P"_"n"`, then the value of n are
The number of arrangements of the letters of the word BANANA in which two N's do not appear adjacently is ______.
The number of different words that can be formed from the letters of the word INTERMEDIATE such that two vowels never come together is ______.
Five boys and five girls form a line. Find the number of ways of making the seating arrangement under the following condition:
C1 | C2 |
(a) Boys and girls alternate: | (i) 5! × 6! |
(b) No two girls sit together : | (ii) 10! – 5! 6! |
(c) All the girls sit together | (iii) (5!)2 + (5!)2 |
(d) All the girls are never together : | (iv) 2! 5! 5! |
The number of three-digit even numbers, formed by the digits 0, 1, 3, 4, 6, 7 if the repetition of digits is not allowed, is ______.