Advertisements
Advertisements
प्रश्न
If in a group of n distinct objects, the number of arrangements of 4 objects is 12 times the number of arrangements of 2 objects, then the number of objects is
विकल्प
10
8
6
none of these.
उत्तर
6
According to the question:
nP4 = 12 x nP2
\[ \Rightarrow \frac{\left( n - 2 \right)!}{\left( n - 4 \right)!} = 12\]
\[ \Rightarrow \left( n - 2 \right)\left( n - 3 \right) = 4 \times 3\]
\[ \Rightarrow n - 2 = 4\]
\[ \Rightarrow n = 6\]
APPEARS IN
संबंधित प्रश्न
Evaluate `(n!)/((n-r)!)` when n = 6, r = 2
Find r if `""^5P_r = 2^6 P_(r-1)`
In how many ways can the letters of the word PERMUTATIONS be arranged if the words start with P and end with S.
In how many ways can the letters of the word PERMUTATIONS be arranged if the there are always 4 letters between P and S?
Find x in each of the following:
Find x in each of the following:
Find x in each of the following:
Which of the following are true:
(2 × 3)! = 2! × 3!
How many three digit numbers can be formed by using the digits 0, 1, 3, 5, 7 while each digit may be repeated any number of times?
How many natural numbers less than 1000 can be formed from the digits 0, 1, 2, 3, 4, 5 when a digit may be repeated any number of times?
In how many ways can 7 letters be posted in 4 letter boxes?
In how many ways can 4 prizes be distributed among 5 students, when
(i) no student gets more than one prize?
(ii) a student may get any number of prizes?
(iii) no student gets all the prizes?
In how many ways 4 women draw water from 4 taps, if no tap remains unused?
The number of permutations of n different things taking r at a time when 3 particular things are to be included is
The number of words that can be formed out of the letters of the word "ARTICLE" so that vowels occupy even places is
How many numbers greater than 10 lacs be formed from 2, 3, 0, 3, 4, 2, 3 ?
The number of ways in which the letters of the word 'CONSTANT' can be arranged without changing the relative positions of the vowels and consonants is
If the letters of the word KRISNA are arranged in all possible ways and these words are written out as in a dictionary, then the rank of the word KRISNA is
How many five digits telephone numbers can be constructed using the digits 0 to 9 If each number starts with 67 with no digit appears more than once?
- In how many ways can 8 identical beads be strung on a necklace?
- In how many ways can 8 boys form a ring?
Evaluate the following.
`(3! xx 0! + 0!)/(2!)`
If `""^10"P"_("r" - 1)` = 2 × 6Pr, find r
Determine the number of permutations of the letters of the word SIMPLE if all are taken at a time?
Find the distinct permutations of the letters of the word MISSISSIPPI?
In how many ways 4 mathematics books, 3 physics books, 2 chemistry books and 1 biology book can be arranged on a shelf so that all books of the same subjects are together
A coin is tossed 8 times, how many different sequences containing six heads and two tails are possible?
How many strings are there using the letters of the word INTERMEDIATE, if all the vowels are together
How many strings are there using the letters of the word INTERMEDIATE, if no two vowels are together
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are even?
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
GARDEN
Find the number of strings that can be made using all letters of the word THING. If these words are written as in a dictionary, what will be the 85th string?
Choose the correct alternative:
If Pr stands for rPr then the sum of the series 1 + P1 + 2P2 + 3P3 + · · · + nPn is
Three married couples are to be seated in a row having six seats in a cinema hall. If spouses are to be seated next to each other, in how many ways can they be seated? Find also the number of ways of their seating if all the ladies sit together.
There are 10 persons named P1, P2, P3, ... P10. Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
In the permutations of n things, r taken together, the number of permutations in which m particular things occur together is `""^(n - m)"P"_(r - m) xx ""^r"P"_m`.
Five boys and five girls form a line. Find the number of ways of making the seating arrangement under the following condition:
C1 | C2 |
(a) Boys and girls alternate: | (i) 5! × 6! |
(b) No two girls sit together : | (ii) 10! – 5! 6! |
(c) All the girls sit together | (iii) (5!)2 + (5!)2 |
(d) All the girls are never together : | (iv) 2! 5! 5! |
The number of three-digit even numbers, formed by the digits 0, 1, 3, 4, 6, 7 if the repetition of digits is not allowed, is ______.
Ten different letters of an alphabet are given. Words with five letters are formed from these given letters. Determine the number of words which have at least one letter repeated.