Advertisements
Advertisements
प्रश्न
The number of ways in which the letters of the word 'CONSTANT' can be arranged without changing the relative positions of the vowels and consonants is
विकल्प
360
256
444
none of these.
उत्तर
360
The word CONSTANT consists of two vowels that are placed at the 2nd and 6th position, and six consonants.
The two vowels can be arranged at their respective places, i.e. 2nd and 6th place, in 2! ways.
The remaining 6 consonants can be arranged at their respective places in \[\frac{6!}{2!2!}\]ways.
∴ Total number of arrangements =\[2! \times \frac{6!}{2!2!}\]
APPEARS IN
संबंधित प्रश्न
Evaluate 8!
Evaluate `(n!)/((n-r)!)` when n = 6, r = 2
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
Find n if n – 1P3 : nP4 = 1 : 9
Find r if `""^5P_r = 2^6 P_(r-1)`
How many words, with or without meaning, can be formed using all the letters of the word EQUATION, using each letter exactly once?
How many natural numbers not exceeding 4321 can be formed with the digits 1, 2, 3 and 4, if the digits can repeat?
A coin is tossed three times and the outcomes are recorded. How many possible outcomes are there? How many possible outcomes if the coin is tossed four times? Five times? n times?
How many three digit numbers can be formed by using the digits 0, 1, 3, 5, 7 while each digit may be repeated any number of times?
Evaluate each of the following:
P(6, 4)
Write the number of 5 digit numbers that can be formed using digits 0, 1 and 2 ?
Write the number of ways in which 7 men and 7 women can sit on a round table such that no two women sit together ?
The number of words that can be formed out of the letters of the word "ARTICLE" so that vowels occupy even places is
In a room there are 12 bulbs of the same wattage, each having a separate switch. The number of ways to light the room with different amounts of illumination is
How many six-digit telephone numbers can be formed if the first two digits are 45 and no digit can appear more than once?
How many five digits telephone numbers can be constructed using the digits 0 to 9 If each number starts with 67 with no digit appears more than once?
In how many ways 5 boys and 3 girls can be seated in a row, so that no two girls are together?
Find the rank of the word ‘CHAT’ in the dictionary.
The greatest positive integer which divide n(n + 1) (n + 2) (n + 3) for all n ∈ N is:
The number of words with or without meaning that can be formed using letters of the word “EQUATION”, with no repetition of letters is:
The number of permutation of n different things taken r at a time, when the repetition is allowed is:
Determine the number of permutations of the letters of the word SIMPLE if all are taken at a time?
How many strings can be formed from the letters of the word ARTICLE, so that vowels occupy the even places?
8 women and 6 men are standing in a line. How many arrangements are possible if any individual can stand in any position?
8 women and 6 men are standing in a line. In how many arrangements will all 6 men be standing next to one another?
A coin is tossed 8 times, how many different sequences containing six heads and two tails are possible?
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
GARDEN
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
DANGER
In how many ways can 5 children be arranged in a line such that two particular children of them are always together
In how many ways 3 mathematics books, 4 history books, 3 chemistry books and 2 biology books can be arranged on a shelf so that all books of the same subjects are together.
Find the number of different words that can be formed from the letters of the word ‘TRIANGLE’ so that no vowels are together
A five-digit number divisible by 3 is to be formed using the numbers 0, 1, 2, 3, 4 and 5 without repetitions. The total number of ways this can be done is ______.
In the permutations of n things, r taken together, the number of permutations in which m particular things occur together is `""^(n - m)"P"_(r - m) xx ""^r"P"_m`.
Five boys and five girls form a line. Find the number of ways of making the seating arrangement under the following condition:
C1 | C2 |
(a) Boys and girls alternate: | (i) 5! × 6! |
(b) No two girls sit together : | (ii) 10! – 5! 6! |
(c) All the girls sit together | (iii) (5!)2 + (5!)2 |
(d) All the girls are never together : | (iv) 2! 5! 5! |
Using the digits 1, 2, 3, 4, 5, 6, 7, a number of 4 different digits is formed. Find
C1 | C2 |
(a) How many numbers are formed? | (i) 840 |
(b) How many number are exactly divisible by 2? | (i) 200 |
(c) How many numbers are exactly divisible by 25? | (iii) 360 |
(d) How many of these are exactly divisible by 4? | (iv) 40 |