English

Prove That: N ! ( N − R ) ! R ! + N ! ( N − R + 1 ) ! ( R − 1 ) ! = ( N + 1 ) ! R ! ( N − R + 1 ) ! - Mathematics

Advertisements
Advertisements

Question

Prove that:

\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]

Solution

\[ LHS = \frac{n!}{\left( n - r \right)!r!} + \frac{n!}{\left( n - r + 1 \right)!}\]
\[ = \frac{n!}{\left( n - r \right)!r!} + \frac{n!}{(n - r + 1) [(n - r)!]}\]
\[ = \frac{n!\left( n - r + 1 \right) + n!r!}{r!\left( n - r + 1 \right) [(n - r)!]}\]
\[ = \frac{n!\left( n + 1 \right) - n!r! + n!r!}{r!\left( n - r + 1 \right)\left( n - r \right)!}\]
\[ = \frac{n!(n + 1)}{r!\left( n - r + 1 \right)\left( n - r \right)!}\]
\[ = \frac{\left( n + 1! \right)}{r!\left( n - r + 1 \right)!} = \text{RHS}\]
\[ \text{Hence proved} .\]

shaalaa.com
Factorial N (N!) Permutations and Combinations
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.1 [Page 5]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.1 | Q 11.2 | Page 5

RELATED QUESTIONS

Convert the following products into factorials:

5 · 6 · 7 · 8 · 9 · 10


Convert the following products into factorials: 

3 · 6 · 9 · 12 · 15 · 18


Convert the following products into factorials: 

(n + 1) (n + 2) (n + 3) ... (2n)


Prove that:

\[\frac{(2n + 1)!}{n!}\] = 2n [1 · 3 · 5 ... (2n − 1) (2n + 1)]

If nP4 = 360, find the value of n.


In how many ways can five children stand in a queue?


Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?


Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?


How many three-digit numbers are there, with distinct digits, with each digit odd?


There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?


In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels come together?

 


How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letters P and I respectively occupy first and last place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels always occupy even places?


How many permutations can be formed by the letters of the word, 'VOWELS', when

there is no restriction on letters?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all consonants come together?


In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?


Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE


Find the number of words formed by permuting all the letters of the following words:
ARRANGE


Find the number of words formed by permuting all the letters of the following words:

RUSSIA


Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE


There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?


In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?


In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?


If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?


In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:

the relative order of vowels and consonants do not alter?


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{n - r + 1}{r}\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if  all letters are used at a time 


Find the number of permutations of n distinct things taken together, in which 3 particular things must occur together.


How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×