Advertisements
Advertisements
Question
Prove that:
\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]
Solution
\[ LHS = \frac{n!}{\left( n - r \right)!r!} + \frac{n!}{\left( n - r + 1 \right)!}\]
\[ = \frac{n!}{\left( n - r \right)!r!} + \frac{n!}{(n - r + 1) [(n - r)!]}\]
\[ = \frac{n!\left( n - r + 1 \right) + n!r!}{r!\left( n - r + 1 \right) [(n - r)!]}\]
\[ = \frac{n!\left( n + 1 \right) - n!r! + n!r!}{r!\left( n - r + 1 \right)\left( n - r \right)!}\]
\[ = \frac{n!(n + 1)}{r!\left( n - r + 1 \right)\left( n - r \right)!}\]
\[ = \frac{\left( n + 1! \right)}{r!\left( n - r + 1 \right)!} = \text{RHS}\]
\[ \text{Hence proved} .\]
APPEARS IN
RELATED QUESTIONS
Convert the following products into factorials:
5 · 6 · 7 · 8 · 9 · 10
Convert the following products into factorials:
3 · 6 · 9 · 12 · 15 · 18
Convert the following products into factorials:
(n + 1) (n + 2) (n + 3) ... (2n)
Prove that:
If nP4 = 360, find the value of n.
In how many ways can five children stand in a queue?
Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?
Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?
How many three-digit numbers are there, with distinct digits, with each digit odd?
There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?
In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letters P and I respectively occupy first and last place?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels always occupy even places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
there is no restriction on letters?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all consonants come together?
In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?
Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE
Find the number of words formed by permuting all the letters of the following words:
ARRANGE
Find the number of words formed by permuting all the letters of the following words:
RUSSIA
Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE
There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?
In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?
In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:
the relative order of vowels and consonants do not alter?
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used at a time
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?