Advertisements
Advertisements
प्रश्न
Find the number of words formed by permuting all the letters of the following words:
INTERMEDIATE
उत्तर
This word consists of 12 letters that include two Is, two Ts and three Es.
The total number of words is the number of arrangements of 12 things, of which 2 are similar to one kind, 2 are similar to the second kind and 3 are similar to the third kind.
⇒\[\frac{12!}{2!2!3!}\]= 19958400
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
(n + 1) (n + 2) (n + 3) ... (2n)
Prove that: n! (n + 2) = n! + (n + 1)!
If (n + 2)! = 60 [(n − 1)!], find n.
If \[\frac{(2n)!}{3! (2n - 3)!}\] and \[\frac{n!}{2! (n - 2)!}\] are in the ratio 44 : 3, find n.
Prove that:
If nP4 = 360, find the value of n.
In how many ways can five children stand in a queue?
From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?
Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.
How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?
How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?
In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?
How many 3-digit even number can be made using the digits 1, 2, 3, 4, 5, 6, 7, if no digits is repeated?
All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels occupy only the odd places?
How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
there is no restriction on letters?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with O and ends with L?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all consonants come together?
In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.
Find the number of words formed by permuting all the letters of the following words:
INDIA
Find the number of words formed by permuting all the letters of the following words:
RUSSIA
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?
How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?
How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.
In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?
How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?
If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.
In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time
Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.
Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.