मराठी

If ( 2 N ) ! 3 ! ( 2 N − 3 ) ! and N ! 2 ! ( N − 2 ) ! Are in the Ratio 44 : 3, Find N. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\frac{(2n)!}{3! (2n - 3)!}\]  and \[\frac{n!}{2! (n - 2)!}\]  are in the ratio 44 : 3, find n.

 

 

उत्तर

\[\frac{(2n)!}{3!(2n - 3)!}: \frac{n!}{2!(n - 2)!} = 44: 3 \]
\[ \Rightarrow \frac{(2n)!}{3!(2n - 3)!} \times \frac{2!(n - 2)!}{n!} = \frac{44}{3}\]
\[ \Rightarrow \frac{(2n)(2n - 1)(2n - 2) [(2n - 3)!]}{3(2!)(2n - 3)!} \times \frac{2!(n - 2)!}{n(n - 1) [(n - 2)!]} = \frac{44}{3}\]
\[ \Rightarrow \frac{(2n)(2n - 1)(2n - 2)}{3} \times \frac{1}{n(n - 1)} = \frac{44}{3}\]
\[ \Rightarrow \frac{(2n)(2n - 1)(2)(n - 1)}{3} \times \frac{1}{n(n - 1)} = \frac{44}{3}\]
\[ \Rightarrow \frac{4(2n - 1)n(n - 1)}{3} \times \frac{1}{n(n - 1)} = \frac{44}{3}\]
\[ \Rightarrow \frac{4(2n - 1)}{3} = \frac{44}{3}\]
\[ \Rightarrow (2n - 1) = 11\]
\[ \Rightarrow 2n = 12\]
\[ \Rightarrow n = 6\]

shaalaa.com
Factorial N (N!) Permutations and Combinations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.1 [पृष्ठ ५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.1 | Q 10 | पृष्ठ ५

संबंधित प्रश्‍न

Convert the following products into factorials:

1 · 3 · 5 · 7 · 9 ... (2n − 1)


If P (9, r) = 3024, find r.


If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.


If P (n, 5) : P (n, 3) = 2 : 1, find n.


If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.


Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.


How many three-digit numbers are there, with distinct digits, with each digit odd?


How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?


How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?


Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels come together?

 


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels occupy only the odd places?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


How many permutations can be formed by the letters of the word, 'VOWELS', when

there is no restriction on letters?


How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with E?


How many permutations can be formed by the letters of the word, 'VOWELS', when

each word begins with O and ends with L?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all consonants come together?


How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.


Find the number of words formed by permuting all the letters of the following words:

INDIA


In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?


How many number of four digits can be formed with the digits 1, 3, 3, 0?


How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?


Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.


The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?


Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

 nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.


There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?


How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?


Find the number of permutations of n different things taken r at a time such that two specified things occur together?


Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.


Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]


Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.


Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×