मराठी

How Many Words Each of 3 Vowels and 2 Consonants Can Be Formed from the Letters of the Word Involute? - Mathematics

Advertisements
Advertisements

प्रश्न

How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?

उत्तर

There are 4 vowels and 4 consonants in the word INVOLUTE.
Out of these, 3 vowels and 2 consonants can be chosen in \[\left( {}^4 C_3 \times^4 C_2 \right)\]  ways.

The 5 letters that have been selected can be arranged in 5! ways.
∴ Required number of words =\[\left( {}^4 C_3 \times {}^4 C_2 \right) \times 5! = 4 \times 6 \times 120 = 2880\]

shaalaa.com
Factorial N (N!) Permutations and Combinations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Combinations - Exercise 17.3 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 17 Combinations
Exercise 17.3 | Q 5 | पृष्ठ २३

संबंधित प्रश्‍न

If (n + 1)! = 90 [(n − 1)!], find n.


If \[\frac{(2n)!}{3! (2n - 3)!}\]  and \[\frac{n!}{2! (n - 2)!}\]  are in the ratio 44 : 3, find n.

 

 


If P (n, 4) = 12 . P (n, 2), find n.


If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.


If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.


How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?


How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?


If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of  permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.


How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?


How many 3-digit even number can be made using the digits 1, 2, 3, 4, 5, 6, 7, if no digits is repeated?


All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels come together?

 


How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?


How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all consonants come together?


m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.


Find the number of words formed by permuting all the letters of the following words:
EXERCISES


In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?


How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?


Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.


How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?


How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?


How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.


Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.


In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?


How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?


In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:

the relative order of vowels and consonants do not alter?


Prove that the product of 2n consecutive negative integers is divisible by (2n)!


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{n - r + 1}{r}\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

 nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.


There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.


Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]


Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.


Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×