Advertisements
Advertisements
प्रश्न
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
उत्तर
Total number of words that can be formed with the letters of the word SUNDAY = 6! = 720
Fixing the first letter as D:
Number of arrangements of the remaining 5 letters, taken 5 at a time = 5! = 120
Number of words with the starting letter D = 120
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
5 · 6 · 7 · 8 · 9 · 10
If (n + 3)! = 56 [(n + 1)!], find n.
Prove that:
Prove that:
If P (n, 5) = 20. P(n, 3), find n ?
If P(11, r) = P (12, r − 1) find r.
If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.
There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?
All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
there is no restriction on letters?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.
Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE
Find the number of words formed by permuting all the letters of the following words:
INTERMEDIATE
Find the number of words formed by permuting all the letters of the following words:
INDIA
Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE
In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?
Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.
How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?
How many number of four digits can be formed with the digits 1, 3, 3, 0?
How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?
In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.
In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:
the relative order of vowels and consonants do not alter?
For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1
Evaluate
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.