मराठी

Prove That: ( 2 N + 1 ) ! N ! = 2n [1 · 3 · 5 ... (2n − 1) (2n + 1)] - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

\[\frac{(2n + 1)!}{n!}\] = 2n [1 · 3 · 5 ... (2n − 1) (2n + 1)]

उत्तर

\[\text{LHS} = \frac{\left( 2n + 1 \right)!}{n!} \]
\[ = \frac{\left( 2n + 1 \right)\left( 2n \right)\left( 2n - 1 \right) . . . . \left( 4 \right)\left( 3 \right)\left( 2 \right)\left( 1 \right)}{n!}\]
\[ = \frac{\left[ \left( 1 \right)\left( 3 \right)\left( 5 \right) . . . . . . . . . \left( 2n - 1 \right)\left( 2n + 1 \right) \right]\left[ \left( 2 \right)\left( 4 \right)\left( 6 \right) . . . . . . . . . \left( 2n \right) \right]}{n!} \]
\[ = \frac{2^n \left[ \left( 1 \right)\left( 3 \right)\left( 5 \right) . . . . . . . . . \left( 2n - 1 \right)\left( 2n + 1 \right) \right]\left[ \left( 1 \right)\left( 2 \right)\left( 3 \right) . . . . . . . . . \left( n \right) \right]}{n!}\]
\[ = \frac{2^n \left[ \left( 1 \right)\left( 3 \right)\left( 5 \right) . . . . . . . . . \left( 2n - 1 \right)\left( 2n + 1 \right) \right]\left[ n! \right]}{n!}\]
\[ = 2^n \left[ \left( 1 \right)\left( 3 \right)\left( 5 \right) . . . . . . . . . \left( 2n - 1 \right)\left( 2n + 1 \right) \right] = \text{RHS}\]
\[ \text{Hence, proved} . \]

shaalaa.com
Factorial N (N!) Permutations and Combinations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.1 [पृष्ठ ५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.1 | Q 12 | पृष्ठ ५

संबंधित प्रश्‍न

Convert the following products into factorials:

1 · 3 · 5 · 7 · 9 ... (2n − 1)


If (n + 2)! = 60 [(n − 1)!], find n. 


If (n + 1)! = 90 [(n − 1)!], find n.


If \[\frac{(2n)!}{3! (2n - 3)!}\]  and \[\frac{n!}{2! (n - 2)!}\]  are in the ratio 44 : 3, find n.

 

 


If nP4 = 360, find the value of n.


If P (n, 4) = 12 . P (n, 2), find n.


If P (n, 5) : P (n, 3) = 2 : 1, find n.


How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?


How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?


There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?


How many three-digit numbers are there, with no digit repeated?


In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?


How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels are always together?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels always occupy even places?


How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?


m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.


How many three letter words can be made using the letters of the word 'ORIENTAL'?


Find the number of words formed by permuting all the letters of the following words:
SERIES


How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?


How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?


How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?


There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?


In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?


The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.


In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?


Evaluate

\[^ {20}{}{C}_5 + \sum^5_{r = 2} {}^{25 - r} C_4\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{n - r + 1}{r}\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

Write the maximum number of points of intersection of 8 straight lines in a plane.


Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×