Advertisements
Advertisements
प्रश्न
In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?
उत्तर
No. of boys in the class = 27
No. of girls in the class = 14
Ways to select a boy = 27
Similarly, ways to select a girl = 14
∴ Number of ways to select 1 boy and 1 girl = 27 \[\times\] 14 = 378
APPEARS IN
संबंधित प्रश्न
How many chords can be drawn through 21 points on a circle?
In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:
(i) exactly 3 girls?
(ii) atleast 3 girls?
(iii) atmost 3 girls?
Compute:
Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?
How many three-digit numbers are there?
How many 9-digit numbers of different digits can be formed?
f 24Cx = 24C2x + 3, find x.
If 15C3r = 15Cr + 3, find r.
In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
include 2 particular players?
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
exclude 2 particular players?
From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has(iii) at least 3 girls?
In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines
How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?
How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?
If 20Cr = 20Cr + 4 , then rC3 is equal to
There are 13 players of cricket, out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers?
If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to
If 43Cr − 6 = 43C3r + 1 , then the value of r is
Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?
Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 5 green balls, and 7 blue balls so that 3 balls of every colour are drawn.
There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.
In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C2 – 5C2.
A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.
There are (n + 1) white and (n + 1) black balls each set numbered 1 to (n + 1). The number of ways in which the balls can be arranged in row so that the adjacent balls are of different colours is ______.
The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.
Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear is ______.
From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.