Advertisements
Advertisements
प्रश्न
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
include 2 particular players?
उत्तर
Number of ways in which 11 players can be selected out of 16 =\[{}^{16} C_{11} = \frac{16!}{11! 5!} = \frac{16 \times 15 \times 14 \times 13 \times 12}{5 \times 4 \times 3 \times 2 \times 1} = 4368\]
APPEARS IN
संबंधित प्रश्न
Determine n if `""^(2n)C_3 : ""^nC_3 = 11: 1`
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:
(i) exactly 3 girls?
(ii) atleast 3 girls?
(iii) atmost 3 girls?
The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?
Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?
There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?
A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?
Twelve students complete in a race. In how many ways first three prizes be given?
How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
exclude 2 particular players?
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is excluded.
From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?
How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?
A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?
Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.
If 15C3r = 15Cr + 3 , then r is equal to
If nC12 = nC8 , then n =
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to
There are 13 players of cricket, out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers?
If 43Cr − 6 = 43C3r + 1 , then the value of r is
The number of diagonals that can be drawn by joining the vertices of an octagon is
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can selections be made?
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
Given 5 different green dyes, four different blue dyes and three different red dyes, the number of combinations of dyes which can be chosen taking at least one green and one blue dye is ______.
If some or all of n objects are taken at a time, the number of combinations is 2n – 1.
There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.
The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.
Number of selections of at least one letter from the letters of MATHEMATICS, is ______.
There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.
Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear is ______.