मराठी

If 15c3r = 15cr + 3 , Then R is Equal To(A) 5(B) 4(C) 3(D) 2 - Mathematics

Advertisements
Advertisements

प्रश्न

If 15C3r = 15Cr + 3 , then r is equal to

पर्याय

  • 5

  •  4

  • 3

  • 2

MCQ

उत्तर

3

\[3r + r + 3 = 15\]  [∵\[{}^n C_x =^n C_y \Rightarrow n = x + y\ \text{or} x = y\]]
\[\Rightarrow 4r + 3 = 15\]
\[ \Rightarrow 4r = 12\]
\[ \Rightarrow r = 3\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Combinations - Exercise 17.5 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 17 Combinations
Exercise 17.5 | Q 3 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?


How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?


The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?


Compute:

\[\frac{11! - 10!}{9!}\]

In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?


There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?


How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?


Since the  number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`


How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?


If nC10 = nC12, find 23Cn.


If n +2C8 : n − 2P4 = 57 : 16, find n.


If 16Cr = 16Cr + 2, find rC4.


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:

a particular student is excluded.


How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?


A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?


Find the number of (ii) triangles


Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?


In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?


Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.


If 20Cr = 20Cr−10, then 18Cr is equal to


If 20Cr = 20Cr + 4 , then rC3 is equal to


How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120


The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is


Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3


If α = mC2, then αCis equal to.


If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.


If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


A convex polygon has 44 diagonals. Find the number of its sides.


If nC12 = nC8, then n is equal to ______.


Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to ______.


There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:

C1 C2
(a) In how many ways committee: can be formed (i) 10C2 × 19C3 
(b) In how many ways a particular: professor is included (ii) 10C2 × 19C2
(c) In how many ways a particular: lecturer is included (iii) 9C1 × 20C3
(d) In how many ways a particular: lecturer is excluded (iv) 10C2 × 20C3

There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.


The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×