Advertisements
Advertisements
प्रश्न
If 15C3r = 15Cr + 3 , then r is equal to
विकल्प
5
4
3
2
उत्तर
3
\[ \Rightarrow 4r = 12\]
\[ \Rightarrow r = 3\]
APPEARS IN
संबंधित प्रश्न
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
Evaluate the following:
If nC4 = nC6, find 12Cn.
If 2nC3 : nC2 = 44 : 3, find n.
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
exclude 2 particular players?
From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has(iii) at least 3 girls?
Find the number of (i) diagonals
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?
If 20Cr = 20Cr−10, then 18Cr is equal to
5C1 + 5C2 + 5C3 + 5C4 +5C5 is equal to
In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?
How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120
If n + 1C3 = 2 · nC2 , then n =
Find n if `""^6"P"_2 = "n" ""^6"C"_2`
Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.
There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.
Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can selections be made?
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected from the lot.
A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw
In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least one boy and one girl
Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is ______.
Given 5 different green dyes, four different blue dyes and three different red dyes, the number of combinations of dyes which can be chosen taking at least one green and one blue dye is ______.
The number of numbers between 2,000 and 5,000 that can be formed with the digits 0, 1, 2, 3, 4, (repetition of digits is not allowed) and are multiple of 3 is?