Advertisements
Advertisements
प्रश्न
Find the number of (i) diagonals
उत्तर
A decagon has 10 sides.
(i) Number of diagonals =\[\frac{n \left( n - 3 \right)}{2} = \frac{10 \left( 10 - 3 \right)}{2} = 35\]
APPEARS IN
संबंधित प्रश्न
If nC8 = nC2, find nC2.
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?
The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?
From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?
There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
How many three-digit numbers are there?
How many three-digit odd numbers are there?
How many 3-digit numbers are there, with distinct digits, with each digit odd?
Serial numbers for an item produced in a factory are to be made using two letters followed by four digits (0 to 9). If the letters are to be taken from six letters of English alphabet without repetition and the digits are also not repeated in a serial number, how many serial numbers are possible?
Evaluate the following:
12C10
Evaluate the following:
If nC10 = nC12, find 23Cn.
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
exclude 2 particular players?
How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.
In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
Find the number of ways in which : (a) a selection
There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.
If mC1 = nC2 , then
5C1 + 5C2 + 5C3 + 5C4 +5C5 is equal to
A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
If α = mC2, then αC2 is equal to.
In how many ways can the letters of the word 'IMAGE' be arranged so that the vowels should always occupy odd places?
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.
If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?
In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?
Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is ______.
If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.
The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.
The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.