हिंदी

How Many Different Products Can Be Obtained by Multiplying Two Or More of the Numbers 3, 5, 7, 11 (Without Repetition)? - Mathematics

Advertisements
Advertisements

प्रश्न

How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?

उत्तर

Required number of ways of getting different products = 

\[{}^4 C_2 +^4 C_3 +^4 C_4 = 6 + 4 + 1 = 11\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Combinations - Exercise 17.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 17 Combinations
Exercise 17.2 | Q 6 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?


Compute:

 L.C.M. (6!, 7!, 8!)


In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?


From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?


In how many ways can an examinee answer a set of ten true/false type questions?


How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?


If nC4 = nC6, find 12Cn.


In how many ways can a football team of 11 players be selected from 16 players? How many of these will

 exclude 2 particular players?


How many triangles can be obtained by joining 12 points, five of which are collinear?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl? 


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has(iii) at least 3 girls? 


Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?


In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?


In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?


A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?


There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.


If 20Cr = 20Cr−10, then 18Cr is equal to


If mC1 nC2 , then


If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to


The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is


The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is


Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?


Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?


In how many ways can the letters of the word 'IMAGE' be arranged so that the vowels should always occupy odd places?


A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?


There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if two must be white and two red


In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.


The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.


The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is ______.


The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.


A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box if at least one black ball is to be included in the draw is ______.


Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.


The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×