Advertisements
Advertisements
प्रश्न
The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is
विकल्प
27 − 1
28 − 2
28 − 1
28
उत्तर
28 − 2
\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + \left( \ ^{7}{}{C}_2 + \ ^{7}{}{C}_3 \right) + \left( \ ^{7}{}{C}_3 + \ ^{7}{}{C}_4 \right) + \left( \ ^{7}{}{C}_4 + \ ^{7}{}{C}_5 \right) + \left( \ ^{7}{}{C}_5 + \ ^{7}{}{C}_6 \right) + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\]
\[= 1 + 2 \times \ ^{7}{}{C}_1 + 2 \times \ ^{7}{}{C}_2 + 2 \times \ ^{7}{}{C}_3 + 2 \times \ ^{7}{}{C}_4 + 2 \times \ ^{7}{}{C}_5 + 2 \times \ ^{7}{}{C}_6 + 1\]
\[= 1 + 2 \times \ ^{7}{}{C}_1 + 2 \times \ ^{7}{}{C}_2 + 2 \times \ ^{7}{}{C}_3 + 2 \times \ ^{7}{}{C}_3 + 2 \times \ ^{7}{}{C}_2 + 2 \times \ ^{7}{}{C}_6 + 1\]
\[= 2 + 2^2 \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 + \ ^{7}{}{C}_3 \right)\]
\[ = 2 + 2^2 \left( 7 + \frac{7}{2} \times 6 + \frac{7}{3} \times \frac{6}{2} \times 5 \right)\]
\[= 2 + 252 \]
\[ = 254 \]
\[ = 2^8 - 2\]
APPEARS IN
संबंधित प्रश्न
How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated?
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
Compute:
L.C.M. (6!, 7!, 8!)
From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?
In how many ways can an examinee answer a set of ten true/false type questions?
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
How many 3-digit numbers are there, with distinct digits, with each digit odd?
How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?
Evaluate the following:
n + 1Cn
Evaluate the following:
If nC12 = nC5, find the value of n.
If nC4 = nC6, find 12Cn.
If n +2C8 : n − 2P4 = 57 : 16, find n.
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl?
A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines
Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.
Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.
If 20Cr = 20Cr−10, then 18Cr is equal to
If 15C3r = 15Cr + 3 , then r is equal to
If 20Cr + 1 = 20Cr − 1 , then r is equal to
If C (n, 12) = C (n, 8), then C (22, n) is equal to
If nC12 = nC8 , then n =
5C1 + 5C2 + 5C3 + 5C4 +5C5 is equal to
How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120
If n + 1C3 = 2 · nC2 , then n =
Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 5 green balls, and 7 blue balls so that 3 balls of every colour are drawn.
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.
Answer the following:
A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?
In how many ways can the letters of the word 'IMAGE' be arranged so that the vowels should always occupy odd places?
In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?
A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.