Advertisements
Advertisements
प्रश्न
In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?
उत्तर
It is given that out of 87 families
52 families have at most 2 children
So other 35 families are of other type.
For rural development programme
20 families are to be chosen for assistance, of which at least 18 families must have atmost 2 children.
Thus, the following are the number of possible choices:
52C18 × 35C2 (18 families having atmost 2 children and 2 selected from other type of families)
52C19 × 35C2 (19 families having at most 2 children and 1 selected from other type of families)
52C20 (All selected 20 families having atmost 2 children)
Hence, the total number of possible choices is
52C18 × 35C2 + 52C19 × 35C2 + 35C1 + 52C20
APPEARS IN
संबंधित प्रश्न
How many chords can be drawn through 21 points on a circle?
In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?
A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?
From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
Evaluate the following:
12C10
If nC12 = nC5, find the value of n.
If 18Cx = 18Cx + 2, find x.
If 16Cr = 16Cr + 2, find rC4.
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
exclude 2 particular players?
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?
A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?
Find the number of (ii) triangles
How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?
If mC1 = nC2 , then
Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.
Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.
A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
If nC12 = nC8, then n is equal to ______.
The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.
A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.
Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear is ______.
There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.