Advertisements
Advertisements
प्रश्न
A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?
उत्तर
Let us make the following cases:
Case (i): Boy borrows Mathematics Part II
Then he borrows Mathematics Part I also.
So the number of possible choices is 6C1 = 6.
Case (ii): Boy does not borrow Mathematics Part II
Then the number of possible choices is 7C3 = 35.
Hence, the total number of possible choices is 35 + 6 = 41.
APPEARS IN
संबंधित प्रश्न
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.
The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?
Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.
A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?
In how many ways can six persons be seated in a row?
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
Evaluate the following:
14C3
If 2nC3 : nC2 = 44 : 3, find n.
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
exclude 2 particular players?
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is excluded.
A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl?
Find the number of (ii) triangles
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines
A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?
Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.
If C (n, 12) = C (n, 8), then C (22, n) is equal to
If n + 1C3 = 2 · nC2 , then n =
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.
There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.
Find the value of 15C4 + 15C5
Find the value of 20C16 – 19C16
If α = mC2, then αC2 is equal to.
In how many ways can the letters of the word 'IMAGE' be arranged so that the vowels should always occupy odd places?
How many committee of five persons with a chairperson can be selected from 12 persons.
If some or all of n objects are taken at a time, the number of combinations is 2n – 1.