Advertisements
Advertisements
प्रश्न
Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.
उत्तर
In a deck of 52 cards, there are 4 aces. A combination of 5 cards have to be made in which there is exactly one ace.
Then, one ace can be selected in 4C1 ways and the remaining 4 cards can be selected out of the 48 cards in 48C4 ways.
Thus, by multiplication principle, required number of 5 card combinations
= `""^48C_4 xx ""^4C_1 = (48!)/(4! xx 44!) xx (4!)/(1! xx 3!)`
= `(48 xx 47 xx 46 xx 45)/(4 xx 3 xx 2 xx 1) xx 4`
= 778320
APPEARS IN
संबंधित प्रश्न
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?
How many three-digit numbers are there with no digit repeated?
How many different five-digit number licence plates can be made if
the first-digit cannot be zero, but the repetition of digits is allowed?
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
In how many ways can six persons be seated in a row?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
If nC12 = nC5, find the value of n.
f 24Cx = 24C2x + 3, find x.
If 8Cr − 7C3 = 7C2, find r.
If 16Cr = 16Cr + 2, find rC4.
If α = mC2, then find the value of αC2.
How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines
How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?
Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.
If 20Cr = 20Cr + 4 , then rC3 is equal to
If nCr + nCr + 1 = n + 1Cx , then x =
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to
Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?
Find n and r if `""^"n""P"_"r"` = 720 and `""^"n""C"_("n" - "r")` = 120
Answer the following:
A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?
In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?
A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to ______.
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
15C8 + 15C9 – 15C6 – 15C7 = ______.
There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:
C1 | C2 |
(a) One book of each subject; | (i) 3968 |
(b) At least one book of each subject: | (ii) 60 |
(c) At least one book of English: | (iii) 3255 |
There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:
C1 | C2 |
(a) In how many ways committee: can be formed | (i) 10C2 × 19C3 |
(b) In how many ways a particular: professor is included | (ii) 10C2 × 19C2 |
(c) In how many ways a particular: lecturer is included | (iii) 9C1 × 20C3 |
(d) In how many ways a particular: lecturer is excluded | (iv) 10C2 × 20C3 |