Advertisements
Advertisements
प्रश्न
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
उत्तर
The digits in the sequence do not repeat.
Number of ways of selecting the first digit = 10
Number of ways of selecting the second digit = 9
Number of ways of selecting the third digit = 8
Total number of possible sequences
⇒ 10C1 × 9C1 × 8C1
⇒ 10 × 9 × 8
⇒ 720
Of all the possible sequences, only one sequence is successful.
∴ Number of unsuccessful sequences = 720 − 1 = 719.
APPEARS IN
संबंधित प्रश्न
If nC8 = nC2, find nC2.
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?
How many three-digit numbers are there with no digit repeated?
How many different five-digit number licence plates can be made if
the first-digit cannot be zero, but the repetition of digits is allowed?
Since the number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`
Evaluate the following:
35C35
If nC12 = nC5, find the value of n.
In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?
Find the number of diagonals of (ii) a polygon of 16 sides.
How many triangles can be obtained by joining 12 points, five of which are collinear?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl?
Find the number of (i) diagonals
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
Find the number of ways in which : (a) a selection
If nC12 = nC8 , then n =
If nCr + nCr + 1 = n + 1Cx , then x =
In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?
There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is
Find n if `""^6"P"_2 = "n" ""^6"C"_2`
Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3
A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.
15C8 + 15C9 – 15C6 – 15C7 = ______.
There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C2 – 5C2.
Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.
There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:
C1 | C2 |
(a) In how many ways committee: can be formed | (i) 10C2 × 19C3 |
(b) In how many ways a particular: professor is included | (ii) 10C2 × 19C2 |
(c) In how many ways a particular: lecturer is included | (iii) 9C1 × 20C3 |
(d) In how many ways a particular: lecturer is excluded | (iv) 10C2 × 20C3 |
There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.