हिंदी

Find the Number of Ways in Which : (A) a Selection - Mathematics

Advertisements
Advertisements

प्रश्न

Find the number of ways in which : (a) a selection

उत्तर

There are 10 letters in the word PROPORTION, namely OOO, PP, RR, I, T and N.

(a) The four-letter word may consists of
(i) 3 alike letters and 1 distinct letter
(ii) 2 alike letters of one kind and 2 alike letters of the second kind
(iii) 2 alike letters and 2 distinct letters
(iv) all distinct letters
Now, we shall discuss these four cases one by one.
(i) 3 alike letters and 1 distinct letter:
There is one set of three alike letters, OOO, which can be selected in one way.
Out of the 5 different letters, P, R, I, T and N, one can be selected in

\[{}^5 C_1\]= 5 ways.

(ii) There are 3 sets of two alike letters, which can be selected in 3C2 = 3 ways.
(iii) There are three sets of two alike letters, which can be selected in 3C1 ways.
Now, from the remaining 5 letters, 2 letters can be chosen in 5C2 ways.
Thus, 2 alike letters and 2 different letters can be selected in 3Cx 5C= 30 ways.
(iv) There are 6 different letters.
Number of ways of selecting 4 letters = 6C4 = 15
∴ Total number of ways = 5+ 3 + 30 + 15 = 53

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Combinations - Exercise 17.3 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 17 Combinations
Exercise 17.3 | Q 7.1 | पृष्ठ २३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?


How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?


If the different permutations of all the letter of the word EXAMINATION are listed as in a dictionary, how many words are there in this list before the first word starting with E?


Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.


Compute: 

(i)\[\frac{30!}{28!}\]


Compute:

 L.C.M. (6!, 7!, 8!)


A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?


A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.


Evaluate the following:

14C3


If nC4 = nC6, find 12Cn.


If 16Cr = 16Cr + 2, find rC4.


If α = mC2, then find the value of αC2.


From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?


In how many ways can a football team of 11 players be selected from 16 players? How many of these will

 exclude 2 particular players?


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.


From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?


Find the number of diagonals of (ii) a polygon of 16 sides.


Find the number of (ii) triangles


Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.


In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?


How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?


A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?


If nC12 = nC8 , then n =


If\[\ ^{( a^2 - a)}{}{C}_2 = \ ^{( a^2 - a)}{}{C}_4\] , then a =


Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is


If 43Cr − 6 = 43C3r + 1 , then the value of r is


Find n if `""^6"P"_2 = "n" ""^6"C"_2`


If nC12 = nC8, then n is equal to ______.


The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.


The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is ______.


The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.


A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee ______.


Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.


The value of `""^50"C"_4 + sum_("r" = 1)^6 ""^(56 - "r")"C"_3` is ______.


The number of numbers between 2,000 and 5,000 that can be formed with the digits 0, 1, 2, 3, 4, (repetition of digits is not allowed) and are multiple of 3 is?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×