Advertisements
Advertisements
प्रश्न
A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?
उत्तर
The first day of the year can be any one of the days of the week, i.e the first day can be selected in 7 ways.
But, the year could also be a leap year.
So, the mint should prepare 7 calendars for the non-leap year and 7 calendars for the leap year.
So, total number of calendars that should be made = 7 + 7 = 14
APPEARS IN
संबंधित प्रश्न
Determine n if `""^(2n)C_3 : ""^nC_3 = 12 : 1`
Compute:
L.C.M. (6!, 7!, 8!)
In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?
From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?
There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?
Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?
Twelve students complete in a race. In how many ways first three prizes be given?
How many 9-digit numbers of different digits can be formed?
How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has(iii) at least 3 girls?
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines
Find the number of ways in which : (a) a selection
Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.
There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.
If nC12 = nC8 , then n =
If\[\ ^{( a^2 - a)}{}{C}_2 = \ ^{( a^2 - a)}{}{C}_4\] , then a =
The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is
If 43Cr − 6 = 43C3r + 1 , then the value of r is
Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?
Answer the following:
A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can selections be made?
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.
A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if two must be white and two red
A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box if at least one black ball is to be included in the draw is ______.
A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.
There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.
Number of selections of at least one letter from the letters of MATHEMATICS, is ______.
There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.
There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.
The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.