Advertisements
Advertisements
प्रश्न
The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is
विकल्प
2 × 11C7 + 10C8
10C8 + 11C7
12C8 − 10C6
none of these
उत्तर
12C8 − 10C6
A host lady can invite 8 out of 12 people in
∴ Number of ways = 12C8 − 10C6
APPEARS IN
संबंधित प्रश्न
The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?
Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.
In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?
From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?
How many different five-digit number licence plates can be made if
the first-digit cannot be zero, but the repetition of digits is allowed?
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
If 8Cr − 7C3 = 7C2, find r.
If 16Cr = 16Cr + 2, find rC4.
If α = mC2, then find the value of αC2.
In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?
How many triangles can be obtained by joining 12 points, five of which are collinear?
A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?
Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?
A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.
A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?
Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.
If 20Cr = 20Cr + 4 , then rC3 is equal to
If mC1 = nC2 , then
The number of diagonals that can be drawn by joining the vertices of an octagon is
Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.
There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.
Find the value of 15C4
Find the value of 80C2
A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.
In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box if at least one black ball is to be included in the draw is ______.
Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.
There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:
C1 | C2 |
(a) In how many ways committee: can be formed | (i) 10C2 × 19C3 |
(b) In how many ways a particular: professor is included | (ii) 10C2 × 19C2 |
(c) In how many ways a particular: lecturer is included | (iii) 9C1 × 20C3 |
(d) In how many ways a particular: lecturer is excluded | (iv) 10C2 × 20C3 |
There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.