Advertisements
Advertisements
प्रश्न
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
उत्तर
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is 35.
Explanation:
The following may be the arrangement of (–) and (+)
(–) (+) (–) (+) (–) (+) (–) (+) (–) (+) (–) (+) (–)
Therefore, ‘+’ sign can be arranged only is 1 way because all are identical.
And 4(–) signs can be arranged at 7 places in 7C4 ways
∴ Total number of ways = 7C4 × 1
= `(7 xx 6 xx 5 xx 4)/(4 xx 3 xx 2 xx 1) xx 1`
= 35 ways
Hence, the value of the filler is 35.
APPEARS IN
संबंधित प्रश्न
Determine n if `""^(2n)C_3 : ""^nC_3 = 12 : 1`
Determine n if `""^(2n)C_3 : ""^nC_3 = 11: 1`
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
If the different permutations of all the letter of the word EXAMINATION are listed as in a dictionary, how many words are there in this list before the first word starting with E?
Compute:
(i)\[\frac{30!}{28!}\]
A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?
In how many ways can an examinee answer a set of ten true/false type questions?
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
How many 3-digit numbers are there, with distinct digits, with each digit odd?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
If nC12 = nC5, find the value of n.
If nC10 = nC12, find 23Cn.
If 15C3r = 15Cr + 3, find r.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is excluded.
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?
A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
If 20Cr = 20Cr + 4 , then rC3 is equal to
5C1 + 5C2 + 5C3 + 5C4 +5C5 is equal to
If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.
In how many ways can the letters of the word 'IMAGE' be arranged so that the vowels should always occupy odd places?
In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?
Given 5 different green dyes, four different blue dyes and three different red dyes, the number of combinations of dyes which can be chosen taking at least one green and one blue dye is ______.
A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box if at least one black ball is to be included in the draw is ______.
There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.