Advertisements
Advertisements
प्रश्न
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
उत्तर
Number of ways of answering the first three questions = 4 each
Number of ways of answering the remaining three questions = 2 each
∴ Total number of ways of answering all the questions = 4\[\times\]4\[\times\]4\[\times\]2\[\times\]2\[\times\]2 = 512
APPEARS IN
संबंधित प्रश्न
Determine n if `""^(2n)C_3 : ""^nC_3 = 12 : 1`
How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?
Compute:
(i)\[\frac{30!}{28!}\]
Prove that
A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?
How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?
From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?
How many different five-digit number licence plates can be made if
first digit cannot be zero and the repetition of digits is not allowed,
How many different five-digit number licence plates can be made if
the first-digit cannot be zero, but the repetition of digits is allowed?
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?
If 15Cr : 15Cr − 1 = 11 : 5, find r.
If α = mC2, then find the value of αC2.
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has(iii) at least 3 girls?
Find the number of (i) diagonals
Find the number of (ii) triangles
Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?
If C (n, 12) = C (n, 8), then C (22, n) is equal to
If nC12 = nC8 , then n =
If\[\ ^{( a^2 - a)}{}{C}_2 = \ ^{( a^2 - a)}{}{C}_4\] , then a =
There are 13 players of cricket, out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers?
Find n and r if `""^"n""P"_"r"` = 720 and `""^"n""C"_("n" - "r")` = 120
Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 5 green balls, and 7 blue balls so that 3 balls of every colour are drawn.
There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.
The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.
If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?
In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C2 – 5C2.
Number of selections of at least one letter from the letters of MATHEMATICS, is ______.
Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear is ______.
The number of numbers between 2,000 and 5,000 that can be formed with the digits 0, 1, 2, 3, 4, (repetition of digits is not allowed) and are multiple of 3 is?