Advertisements
Advertisements
प्रश्न
There are 13 players of cricket, out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers?
विकल्प
72
78
42
none of these
उत्तर
78
4 out of 13 players are bowlers.
In other words, 9 players are not bowlers.
A team of 11 is to be selected so as to include at least 2 bowlers.
\[\therefore \text{Number of ways} =^4 C_2 \times^9 C_9 + {}^4 C_3 \times^9 C_8 + {}^4 C_4 \times^9 C_7 \]
\[ = 6 + 36 + 36 \]
\[ = 78\]
APPEARS IN
संबंधित प्रश्न
If nC8 = nC2, find nC2.
How many chords can be drawn through 21 points on a circle?
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?
A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?
How many three-digit numbers are there with no digit repeated?
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
Evaluate the following:
12C10
From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?
How many different selections of 4 books can be made from 10 different books, if
there is no restriction;
There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl?
Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?
Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.
If 15C3r = 15Cr + 3 , then r is equal to
If C (n, 12) = C (n, 8), then C (22, n) is equal to
How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120
If 43Cr − 6 = 43C3r + 1 , then the value of r is
There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.
Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?
A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if two must be white and two red
In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.
There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:
C1 | C2 |
(a) One book of each subject; | (i) 3968 |
(b) At least one book of each subject: | (ii) 60 |
(c) At least one book of English: | (iii) 3255 |
There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:
C1 | C2 |
(a) In how many ways committee: can be formed | (i) 10C2 × 19C3 |
(b) In how many ways a particular: professor is included | (ii) 10C2 × 19C2 |
(c) In how many ways a particular: lecturer is included | (iii) 9C1 × 20C3 |
(d) In how many ways a particular: lecturer is excluded | (iv) 10C2 × 20C3 |
There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.
There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.