हिंदी

If nC8 = nC2, find nC2. - Mathematics

Advertisements
Advertisements

प्रश्न

If nC8 = nC2, find nC2.

योग

उत्तर

nC8 = nC2 = nCn - 2

nC8 = nCn - 2

8 = n - 2

∴ n = 10

nC2 = 10C2 = `(10!)/(2!(10 - 2)!) = (10!)/(2!8!)` = `(10 xx 9 xx 8!)/(2 xx 1 xx 8!) = 45.`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Permutations and Combinations - Exercise 7.4 [पृष्ठ १५३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 7 Permutations and Combinations
Exercise 7.4 | Q 1 | पृष्ठ १५३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.


Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.


A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?


There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?


A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?


How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?


Since the  number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`


Evaluate the following:

35C35


24Cx = 24C2x + 3, find x.


If nC4 , nC5 and nC6 are in A.P., then find n.


In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:

a particular student is excluded.


A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?


A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?


There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.


Find the number of diagonals of , 1.a hexagon


How many triangles can be obtained by joining 12 points, five of which are collinear?


In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?


A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.


If 15C3r = 15Cr + 3 , then r is equal to


If 20Cr + 1 = 20Cr − 1 , then r is equal to


There are 12 points in a plane. The number of the straight lines joining any two of them when 3 of them are collinear, is


Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is


Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 5 green balls, and 7 blue balls so that 3 balls of every colour are drawn.


Find the value of 15C4 


The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______ 


In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?


All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least one boy and one girl


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.


15C8 + 15C915C615C7 = ______.


In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.


The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.


Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.


To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.


There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×