Advertisements
Advertisements
प्रश्न
All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.
विकल्प
360
144
72
54
उत्तर
All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is 144.
Explanation:
We note that there are 3 consonants and 3 vowels E, A and O.
Since no two vowels have to be together, the possible choice for vowels are the places marked as ‘X’.
X M X C X T X, these vowels can be arranged in 4P3 ways 3 consonents can be arranged in 3 ways.
Hence, the required number of ways = 3! × 4P3 = 144.
APPEARS IN
संबंधित प्रश्न
If nC8 = nC2, find nC2.
Determine n if `""^(2n)C_3 : ""^nC_3 = 11: 1`
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
Compute:
L.C.M. (6!, 7!, 8!)
There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
If 8Cr − 7C3 = 7C2, find r.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl?
Find the number of (ii) triangles
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?
Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.
In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?
If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to
The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is
Find n and r if `""^"n""P"_"r"` = 720 and `""^"n""C"_("n" - "r")` = 120
Find the value of 15C4 + 15C5
In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?
A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour
In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?
In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least one boy and one girl
If some or all of n objects are taken at a time, the number of combinations is 2n – 1.
To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.
The value of `""^50"C"_4 + sum_("r" = 1)^6 ""^(56 - "r")"C"_3` is ______.
Number of selections of at least one letter from the letters of MATHEMATICS, is ______.
There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.