Advertisements
Advertisements
प्रश्न
Find the value of 15C4 + 15C5
उत्तर
15C4 + 15C5 = 15C5 + 15C4
= 15C5 + 15C5–1
= 16C5 ...[∵ nCr + nCr–1 = n+1Cr]
APPEARS IN
संबंधित प्रश्न
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
In how many ways can an examinee answer a set of ten true/false type questions?
From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?
How many three-digit numbers are there with no digit repeated?
How many three-digit numbers are there?
How many different five-digit number licence plates can be made if
the first-digit cannot be zero, but the repetition of digits is allowed?
How many 3-digit numbers are there, with distinct digits, with each digit odd?
If 28C2r : 24C2r − 4 = 225 : 11, find r.
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
include 2 particular players?
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is excluded.
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines
If 20Cr = 20Cr−10, then 18Cr is equal to
If 20Cr + 1 = 20Cr − 1 , then r is equal to
There are 12 points in a plane. The number of the straight lines joining any two of them when 3 of them are collinear, is
There are 13 players of cricket, out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers?
If n + 1C3 = 2 · nC2 , then n =
Find n and r if `""^"n""P"_"r"` = 720 and `""^"n""C"_("n" - "r")` = 120
In how many ways can the letters of the word 'IMAGE' be arranged so that the vowels should always occupy odd places?
The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.
A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw
If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.
In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls
Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is ______.
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.
15C8 + 15C9 – 15C6 – 15C7 = ______.
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.
There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:
C1 | C2 |
(a) In how many ways committee: can be formed | (i) 10C2 × 19C3 |
(b) In how many ways a particular: professor is included | (ii) 10C2 × 19C2 |
(c) In how many ways a particular: lecturer is included | (iii) 9C1 × 20C3 |
(d) In how many ways a particular: lecturer is excluded | (iv) 10C2 × 20C3 |
If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.
There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.