हिंदी

In an Examination, a Student Has to Answer 4 Questions Out of 5 Questions; Questions 1 and 2 Are However Compulsory. Determine the Number of Ways in Which the Student Can Make the Choice. - Mathematics

Advertisements
Advertisements

प्रश्न

In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.

उत्तर

A student has to answer 4 question out of 5 questions.
Since questions 1 and 2 are compulsory, he/she will have to answer 2 question from the remaining 3.
∴ Required number of ways =\[{}^3 C_2 = 3\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Combinations - Exercise 17.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 17 Combinations
Exercise 17.2 | Q 12 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Determine n if  `""^(2n)C_3 : ""^nC_3 = 11: 1`


Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.


Compute: 

(i)\[\frac{30!}{28!}\]


There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?


How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?


If 8Cr − 7C3 = 7C2, find r.


If α = mC2, then find the value of αC2.


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:

a particular student is included.


How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?


From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?


There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.


Find the number of (ii) triangles


Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?


In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?


In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?


If 20Cr = 20Cr−10, then 18Cr is equal to


There are 12 points in a plane. The number of the straight lines joining any two of them when 3 of them are collinear, is


The number of diagonals that can be drawn by joining the vertices of an octagon is


Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?


Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3


There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.


Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.


Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.


Find the value of 80C2


Find the value of 20C1619C16 


A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?


In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?


In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?


The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.


In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.


The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.


Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.


There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:

C1 C2
(a) In how many ways committee: can be formed (i) 10C2 × 19C3 
(b) In how many ways a particular: professor is included (ii) 10C2 × 19C2
(c) In how many ways a particular: lecturer is included (iii) 9C1 × 20C3
(d) In how many ways a particular: lecturer is excluded (iv) 10C2 × 20C3

A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.


There are (n + 1) white and (n + 1) black balls each set numbered 1 to (n + 1). The number of ways in which the balls can be arranged in row so that the adjacent balls are of different colours is ______.


The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.


Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×