Advertisements
Advertisements
प्रश्न
If α = mC2, then find the value of αC2.
उत्तर
\[{}^\alpha C_2 = \frac{\alpha}{2} \times \frac{(\alpha - 1)}{1} \times^\alpha C_0\] [∵\[{}^n C_r = \frac{n}{r} . {}^{n - 1} C_{r - 1}\]]
\[ = \frac{1}{2} \left[ \frac{m!}{2! \left( m - 2 \right)!} \left( \frac{m!}{2! \left( m - 2 \right)!} - 1 \right) \right]\]
\[ = \frac{1}{2} \left[ \frac{m \left( m - 1 \right)}{2} \left( \frac{m \left( m - 1 \right)}{2} - 1 \right) \right]\]
\[ = \frac{1}{2} \left[ \frac{m\left( m - 1 \right)}{2} \left( \frac{m \left( m - 1 \right) - 2}{2} \right) \right]\]
\[ = \frac{1}{8} \left[ m \left( m - 1 \right) \left\{ m \left( m - 1 \right) - 2 \right\} \right]\]
\[ = \frac{1}{8} \left[ m^2 \left( m - 1 \right)^2 - 2m \left( m - 1 \right) \right]\]
\[ = \frac{1}{8} \left[ m^2 \left( m^2 + 1 - 2m \right) - 2 m^2 + 2m \right]\]
\[ = \frac{1}{8} \left[ m^4 + m^2 - 2 m^3 - 2 m^2 + 2m \right]\]
\[ = \frac{1}{8} \left[ m^4 - 2 m^3 - m^2 + 2m \right]\]
\[ = \frac{1}{8} \left[ \left( m^2 - 2m \right) \left( m^2 - 1 \right) \right]\]
\[ = \frac{1}{8} \left[ m \left( m - 2 \right) \left( m - 1 \right) \left( m + 1 \right) \right]\]
\[ = \frac{1}{8} \left( m + 1 \right) m \left( m - 1 \right) \left( m - 2 \right)\]
APPEARS IN
संबंधित प्रश्न
If nC8 = nC2, find nC2.
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
Compute:
L.C.M. (6!, 7!, 8!)
From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?
Twelve students complete in a race. In how many ways first three prizes be given?
How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
Evaluate the following:
14C3
Evaluate the following:
12C10
Evaluate the following:
35C35
If nC12 = nC5, find the value of n.
f 24Cx = 24C2x + 3, find x.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?
Find the number of diagonals of (ii) a polygon of 16 sides.
How many triangles can be obtained by joining 12 points, five of which are collinear?
In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?
Find the number of (i) diagonals
There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.
If 20Cr = 20Cr−10, then 18Cr is equal to
If C (n, 12) = C (n, 8), then C (22, n) is equal to
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to
There are 12 points in a plane. The number of the straight lines joining any two of them when 3 of them are collinear, is
There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is
There are 13 players of cricket, out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers?
If n + 1C3 = 2 · nC2 , then n =
If α = mC2, then αC2 is equal to.
In how many ways can the letters of the word 'IMAGE' be arranged so that the vowels should always occupy odd places?
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can selections be made?
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C2 – 5C2.
There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:
C1 | C2 |
(a) One book of each subject; | (i) 3968 |
(b) At least one book of each subject: | (ii) 60 |
(c) At least one book of English: | (iii) 3255 |
A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.
If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.