हिंदी

There Are 10 Professors and 20 Students Out of Whom a Committee of 2 Professors and 3 Students is to Be Formed. a Particular Professor is Included. - Mathematics

Advertisements
Advertisements

प्रश्न

There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.

उत्तर

Clearly, 2 professors and 3 students are selected out of 10 professors and 20 students, respectively.
Required number of ways  =\[{}^{10} C_2 \times^{20} C_3 = \frac{10}{2} \times \frac{9}{1} \times \frac{20}{3} \times \frac{19}{2} \times \frac{18}{1} = 51300\]

If a particular professor is included, it means that 1 professor is selected out of the remaining 9 professors.Required number of ways =\[{}^{20} C_3 \times^9 C_1 = \frac{20}{3} \times \frac{19}{2} \times \frac{18}{1} \times \frac{9}{1} = 10260\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Combinations - Exercise 17.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 17 Combinations
Exercise 17.2 | Q 5.1 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?


How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated?


Prove that

\[\frac{1}{9!} + \frac{1}{10!} + \frac{1}{11!} = \frac{122}{11!}\]

A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?


Twelve students complete in a race. In how many ways first three prizes be given?


How many 9-digit numbers of different digits can be formed?


How many 3-digit numbers are there, with distinct digits, with each digit odd?


How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?


How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?


If 15Cr : 15Cr − 1 = 11 : 5, find r.


If α = mC2, then find the value of αC2.


In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:

a particular student is excluded.


Find the number of diagonals of , 1.a hexagon


In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?


Find the number of ways in which : (a) a selection


If 20Cr + 1 = 20Cr − 1 , then r is equal to


If\[\ ^{( a^2 - a)}{}{C}_2 = \ ^{( a^2 - a)}{}{C}_4\] , then a =


Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to


In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?


A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends if two of the friends will not attend the party together is


Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 5 green balls, and 7 blue balls so that 3 balls of every colour are drawn.


There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.


Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.


Find the value of 80C2


Find the value of 20C1619C16 


A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?


If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour


If nC12 = nC8, then n is equal to ______.


The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.


A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box if at least one black ball is to be included in the draw is ______.


Number of selections of at least one letter from the letters of MATHEMATICS, is ______.


The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.


From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×