हिंदी

Prove that 1 9 ! + 1 10 ! + 1 11 ! = 122 11 ! - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that

\[\frac{1}{9!} + \frac{1}{10!} + \frac{1}{11!} = \frac{122}{11!}\]

उत्तर

\[LHS = \frac{1}{9!} + \frac{1}{10!} + \frac{1}{11!}\]
\[ = \frac{1}{9!} + \frac{1}{10 \times 9!} + \frac{1}{11 \times 10 \times 9!}\]
\[ = \frac{110 + 11 + 1}{11 \times 10 \times 9!}\]
\[ = \frac{122}{11!} = RHS \hspace{0.167em} \]
\[\text{Hence, proved} .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Permutations - Exercise 16.1 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 16 Permutations
Exercise 16.1 | Q 2 | पृष्ठ ४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?


In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?


It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?


There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?


A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?


How many three-digit numbers are there with no digit repeated?


How many different five-digit number licence plates can be made if

first digit cannot be zero and the repetition of digits is not allowed,


How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?


If 15C3r = 15Cr + 3, find r.


If 15Cr : 15Cr − 1 = 11 : 5, find r.


If 16Cr = 16Cr + 2, find rC4.


How many different selections of 4 books can be made from 10 different books, if
there is no restriction;


From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?


How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?


The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is


There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.


There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?


A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.


The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______ 


All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.


How many committee of five persons with a chairperson can be selected from 12 persons.


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.


Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to ______.


The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.


A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee ______.


Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.


To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.


There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:

C1 C2
(a) One book of each subject; (i) 3968
(b) At least one book of each subject: (ii) 60
(c) At least one book of English: (iii) 3255

A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.


There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.


A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.


The number of numbers between 2,000 and 5,000 that can be formed with the digits 0, 1, 2, 3, 4, (repetition of digits is not allowed) and are multiple of 3 is?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×