Advertisements
Advertisements
प्रश्न
How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?
उत्तर
There are 9 letters in the word MORADABAD, namely AAA, DD, M, R, B and O.
The four-letter word may consists of
(i) 3 alike letters and 1 distinct letter
(ii) 2 alike letters of one kind and 2 alike letters of the other kind
(iii) 2 alike letters and 2 distinct letters
(iv) all different letters
(i) 3 alike letters and 1 distinct letter:
There is one set of three alike letters, AAA, which can be selected in one way.
Out of the 5 different letters D, M, R, B and O, one can be selected in \[{}^5 C_1\]ways.
These four letters can be arranged in\[\frac{4!}{3! 1!}\]ways.
∴ Total number of ways = \[{}^5 C_1 \times \frac{4!}{3! 1!} = 20\]
(ii) There are two sets of two alike letters, which can be selected in 2C2 ways.
Now, the letters of each group can be arranged in \[\frac{4!}{2! 2!}\]ways.
∴ Total number of ways =\[{}^2 C_2 \times \frac{4!}{2! 2!} = 6\]
(iii) There is only one set of two alike letters, which can be selected in 2C1 ways.
Now, from the remaining 5 letters, 2 letters can be chosen in 5C2 ways.
Thus, 2 alike letters and 2 different letters can be selected in 2C1 x 5C2 = 20 ways.
Now, the letters of each group can be arranged in \[\frac{4!}{2!}\]
∴ Total number of ways = \[20 \times \frac{4!}{2!} = 240\]
(iv) There are 6 different letters A, D, M,B, O and R.
So, the number of ways of selecting 4 letters is 6C4, i.e. 15, and these letters can be arranged in 4! ways.
∴ Total number of ways = 15 x 4! = 360
∴ Total number of ways = 20 + 6 + 240 + 360 = 626
APPEARS IN
संबंधित प्रश्न
How many chords can be drawn through 21 points on a circle?
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?
How many three-digit odd numbers are there?
How many 3-digit numbers are there, with distinct digits, with each digit odd?
How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?
Evaluate the following:
n + 1Cn
Evaluate the following:
If nC10 = nC12, find 23Cn.
If 8Cr − 7C3 = 7C2, find r.
If n +2C8 : n − 2P4 = 57 : 16, find n.
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
include 2 particular players?
How many different selections of 4 books can be made from 10 different books, if
there is no restriction;
Find the number of diagonals of (ii) a polygon of 16 sides.
In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?
In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.
Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.
If 20Cr = 20Cr−10, then 18Cr is equal to
If nC12 = nC8 , then n =
Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?
In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?
There are 13 players of cricket, out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers?
A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends if two of the friends will not attend the party together is
Find the value of 15C4 + 15C5
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to ______.
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.
The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.
There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:
C1 | C2 |
(a) One book of each subject; | (i) 3968 |
(b) At least one book of each subject: | (ii) 60 |
(c) At least one book of English: | (iii) 3255 |
The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.