Advertisements
Advertisements
प्रश्न
There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:
C1 | C2 |
(a) One book of each subject; | (i) 3968 |
(b) At least one book of each subject: | (ii) 60 |
(c) At least one book of English: | (iii) 3255 |
उत्तर
C1 | C2 |
(a) One book of each subject; | (i) 60 |
(b) At least one book of each subject: | (ii)3255 |
(c) At least one book of English: | (iii) 3968 |
Explanation:
We have 3 books of Mathematics, 4 of Physics and 5 on English
(a) One book of each subject = 3C1 × 4C1 × 5C1
= 3 × 4 × 5
= 60
(b) Atleast one book of each subject = (23 – 1) × (24 – 1) × (25 – 1)
= = 7 × 15 × 31
= 3255
(c) Atleast one book of English = (25 – 1) × 27
= 31 × 128
= 3986
APPEARS IN
संबंधित प्रश्न
Determine n if `""^(2n)C_3 : ""^nC_3 = 11: 1`
In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?
How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:
(i) exactly 3 girls?
(ii) atleast 3 girls?
(iii) atmost 3 girls?
If the different permutations of all the letter of the word EXAMINATION are listed as in a dictionary, how many words are there in this list before the first word starting with E?
A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?
A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?
If 15Cr : 15Cr − 1 = 11 : 5, find r.
If n +2C8 : n − 2P4 = 57 : 16, find n.
If 2nC3 : nC2 = 44 : 3, find n.
If α = mC2, then find the value of αC2.
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
exclude 2 particular players?
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is included.
From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?
In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?
A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?
Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?
In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?
In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.
There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.
There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.
The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.