मराठी

There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of: C1 C2 (a) One book of each subject; (i) 3968 (b) At - Mathematics

Advertisements
Advertisements

प्रश्न

There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:

C1 C2
(a) One book of each subject; (i) 3968
(b) At least one book of each subject: (ii) 60
(c) At least one book of English: (iii) 3255
जोड्या लावा/जोड्या जुळवा

उत्तर

C1 C2
(a) One book of each subject; (i) 60
(b) At least one book of each subject: (ii)3255
(c) At least one book of English: (iii) 3968

Explanation:

We have 3 books of Mathematics, 4 of Physics and 5 on English

(a) One book of each subject = 3C1 × 4C1 × 5C1

= 3 × 4 × 5

= 60

(b) Atleast one book of each subject = (23 – 1) × (24 – 1) × (25 – 1)

= = 7 × 15 × 31

= 3255

(c) Atleast one book of English = (25 – 1) × 27

= 31 × 128

= 3986

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Permutations and Combinations - Exercise [पृष्ठ १२७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 7 Permutations and Combinations
Exercise | Q 60 | पृष्ठ १२७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Determine n if  `""^(2n)C_3 : ""^nC_3 = 12 : 1`


In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?


How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?


Compute:

 L.C.M. (6!, 7!, 8!)


In how many ways can six persons be seated in a row?


How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?


Evaluate the following:

n + 1Cn


Evaluate the following:

\[\sum^5_{r = 1} {}^5 C_r\]

 


If nC10 = nC12, find 23Cn.


How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?


In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?


In how many ways can a football team of 11 players be selected from 16 players? How many of these will

include 2 particular players?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has(iii) at least 3 girls? 


We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?


The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is


There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?


How many committee of five persons with a chairperson can be selected from 12 persons.


If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least one boy and one girl


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.


The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is ______.


There are (n + 1) white and (n + 1) black balls each set numbered 1 to (n + 1). The number of ways in which the balls can be arranged in row so that the adjacent balls are of different colours is ______.


There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.


There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.


From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×