Advertisements
Advertisements
प्रश्न
How many committee of five persons with a chairperson can be selected from 12 persons.
उत्तर
Total number of Persons = 12
Number of persons to be selected = 5
Out of 5, there is a chairperson
∴ Number of ways of selecting a chairperson = 12C1 = 12
Number of ways of selecting other 4 numbers out of remaining 11 persons = 11C4
∴ Total number of ways = 12C1 × 11C4
= `12 xx (11*10*9*8)/(4*3*2*1)`
= 12 × 330
= 3960
Hence, the required number of ways = 3960.
APPEARS IN
संबंधित प्रश्न
If the different permutations of all the letter of the word EXAMINATION are listed as in a dictionary, how many words are there in this list before the first word starting with E?
A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?
How many three-digit numbers are there with no digit repeated?
In how many ways can six persons be seated in a row?
How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?
If nC12 = nC5, find the value of n.
If n +2C8 : n − 2P4 = 57 : 16, find n.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.
How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?
From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?
How many different selections of 4 books can be made from 10 different books, if
there is no restriction;
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.
How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?
Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.
Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.
If 20Cr + 1 = 20Cr − 1 , then r is equal to
In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?
The number of diagonals that can be drawn by joining the vertices of an octagon is
A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends if two of the friends will not attend the party together is
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.
A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
Find the value of 20C16 – 19C16
All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls
A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee ______.