Advertisements
Advertisements
प्रश्न
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
उत्तर
3 boys and 3 girls are to be selected from 5 boys and 4 girls.
∴ Required ways = \[{}^5 C_3 \times^4 C_3 = \frac{5}{3} \times \frac{4}{2} \times \frac{3}{1} \times \frac{4}{3} \times \frac{3}{2} \times \frac{2}{1} = 40\]
APPEARS IN
संबंधित प्रश्न
Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.
The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?
In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?
A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?
There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?
Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?
Twelve students complete in a race. In how many ways first three prizes be given?
How many 9-digit numbers of different digits can be formed?
How many 3-digit numbers are there, with distinct digits, with each digit odd?
Serial numbers for an item produced in a factory are to be made using two letters followed by four digits (0 to 9). If the letters are to be taken from six letters of English alphabet without repetition and the digits are also not repeated in a serial number, how many serial numbers are possible?
Evaluate the following:
How many different selections of 4 books can be made from 10 different books, if two particular books are never selected?
A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?
Find the number of ways in which : (a) a selection
If mC1 = nC2 , then
There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is
If 43Cr − 6 = 43C3r + 1 , then the value of r is
A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends if two of the friends will not attend the party together is
Find n if `""^6"P"_2 = "n" ""^6"C"_2`
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.
There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.
The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______
In how many ways can the letters of the word 'IMAGE' be arranged so that the vowels should always occupy odd places?
How many committee of five persons with a chairperson can be selected from 12 persons.
A convex polygon has 44 diagonals. Find the number of its sides.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least one boy and one girl
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.
There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C2 – 5C2.
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.
The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.
The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.
From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.